PUBLICATION

Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio)

Authors
Drew, R.E., Settles, M.L., Churchill, E.J., Williams, S.M., Balli, S., and Robison, B.D.
ID
ZDB-PUB-120724-18
Date
2012
Source
BMC Genomics   13(1): 323 (Journal)
Registered Authors
Keywords
none
Datasets
GEO:GSE38729
MeSH Terms
  • Animals
  • Behavior, Animal/physiology*
  • Brain/metabolism*
  • DNA Probes/metabolism
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Humans
  • Male
  • Oligonucleotide Array Sequence Analysis
  • Real-Time Polymerase Chain Reaction
  • Reproducibility of Results
  • Species Specificity
  • Transcriptome/genetics*
  • Zebrafish/genetics*
PubMed
22817472 Full text @ BMC Genomics
Abstract

Background

Domesticated animal populations often show profound reductions in predator avoidance and fear-related behavior compared to wild populations. These reductions are remarkably consistent and have been observed in a diverse array of taxa including fish, birds, and mammals. Experiments conducted in common environments indicate that these behavioral differences have a genetic basis. In this study, we quantified differences in fear-related behavior between wild and domesticated zebrafish strains and used microarray analysis to identify genes that may be associated with this variation.

Results

Compared to wild zebrafish, domesticated zebrafish spent more time near the water surface and were more likely to occupy the front of the aquarium nearest a human observer. Microarray analysis of the brain transcriptome identified high levels of population variation in gene expression, with 1,749 genes significantly differentially expressed among populations. Genes that varied among populations belonged to functional categories that included DNA repair, DNA photolyase activity, response to light stimulus, neuron development and axon guidance, cell death, iron-binding, chromatin reorganization, and homeobox genes. Comparatively fewer genes (112) differed between domesticated and wild strains with notable genes including gpr177 (wntless), selenoprotein P1a, synaptophysin and synaptoporin, and acyl-CoA binding domain containing proteins (acbd3 and acbd4).

Conclusions

Microarray analysis identified a large number of genes that differed among zebrafish populations and may underlie behavioral domestication. Comparisons with similar microarray studies of domestication in rainbow trout and canids identified sixteen evolutionarily or functionally related genes that may represent components of shared molecular mechanisms underlying convergent behavioral evolution during vertebrate domestication. However, this conclusion must be tempered by limitations associated with comparisons among microarray studies and the low level of population-level replication inherent to these studies.

Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping