PUBLICATION
            Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development
- Authors
- Shestopalov, I.A., Pitt, C.L., and Chen, J.K.
- ID
- ZDB-PUB-120202-6
- Date
- 2012
- Source
- Nature Chemical Biology 8(3): 270-276 (Journal)
- Registered Authors
- Chen, James K., Shestopalov, Ilya
- Keywords
- none
- Datasets
- GEO:GSE31881, GEO:GSE31882, GEO:GSE31880
- MeSH Terms
- 
    
        
        
            
                - Time Factors
- Mesoderm/embryology*
- Mesoderm/metabolism*
- T-Box Domain Proteins/genetics*
- Fetal Proteins
- Zebrafish/embryology*
- Zebrafish/genetics*
- Animals
- Gene Expression Regulation, Developmental*
- Zebrafish Proteins/genetics*
- Transcriptome*
 
- PubMed
- 22286130 Full text @ Nat. Chem. Biol.
            Citation
        
        
            Shestopalov, I.A., Pitt, C.L., and Chen, J.K. (2012) Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development. Nature Chemical Biology. 8(3):270-276.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Transcription factors have diverse roles during embryonic development, combinatorially controlling cellular states in a spatially and temporally defined manner. Resolving the dynamic transcriptional profiles that underlie these patterning processes is essential for understanding embryogenesis at the molecular level. Here we show how temporal, tissue-specific changes in embryonic transcription factor function can be discerned by integrating caged morpholino oligonucleotides with photoactivatable fluorophores, fluorescence-activated cell sorting and microarray technologies. As a proof of principle, we have dynamically profiled No tail a (Ntla)-dependent genes at different stages of axial mesoderm development in zebrafish, discovering discrete sets of transcripts that are coincident with either notochord cell fate commitment or differentiation. Our studies reveal new regulators of notochord development and the sequential activation of distinct transcriptomes within a cell lineage by a single transcriptional factor and demonstrate how optically controlled chemical tools can dissect developmental processes with spatiotemporal precision.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    