PUBLICATION
            Stereotypical Cell Division Orientation Controls Neural Rod Midline Formation in Zebrafish
- Authors
 - Quesada-Hernández, E., Caneparo, L., Schneider, S., Winkler, S., Liebling, M., Fraser, S.E., and Heisenberg, C.P.
 - ID
 - ZDB-PUB-101027-36
 - Date
 - 2010
 - Source
 - Current biology : CB 20(21): 1966-1972 (Journal)
 - Registered Authors
 - Caneparo, Luca, Fraser, Scott E., Heisenberg, Carl-Philipp, Kaufmann, Sylvia, Liebling, Michael, Quesada-Hernández, Elena, Winkler, Sylke
 - Keywords
 - none
 - MeSH Terms
 - 
    
        
        
            
                
- Zebrafish/embryology*
 - Animals
 - Zebrafish Proteins/genetics
 - Zebrafish Proteins/metabolism
 - Zebrafish Proteins/physiology
 - Receptors, Cell Surface/genetics
 - Receptors, Cell Surface/metabolism
 - Receptors, Cell Surface/physiology
 - Gastrulation/physiology
 - Cell Division/physiology*
 - Cell Polarity
 - Body Patterning/physiology*
 - Neurulation/physiology
 
 - PubMed
 - 20970340 Full text @ Curr. Biol.
 
            Citation
        
        
            Quesada-Hernández, E., Caneparo, L., Schneider, S., Winkler, S., Liebling, M., Fraser, S.E., and Heisenberg, C.P. (2010) Stereotypical Cell Division Orientation Controls Neural Rod Midline Formation in Zebrafish. Current biology : CB. 20(21):1966-1972.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                The development of multicellular organisms is dependent on the tight coordination between tissue growth and morphogenesis. The stereotypical orientation of cell divisions has been proposed to be a fundamental mechanism by which proliferating and growing tissues take shape. However, the actual contribution of stereotypical division orientation (SDO) to tissue morphogenesis is unclear. In zebrafish, cell divisions with stereotypical orientation have been implicated in both body-axis elongation and neural rod formation [1, 2], although there is little direct evidence for a critical function of SDO in either of these processes. Here we show that SDO is required for formation of the neural rod midline during neurulation but dispensable for elongation of the body axis during gastrulation. Our data indicate that SDO during both gastrulation and neurulation is dependent on the noncanonical Wnt receptor Frizzled 7 (Fz7) and that interfering with cell division orientation leads to severe defects in neural rod midline formation but not body-axis elongation. These findings suggest a novel function for Fz7-controlled cell division orientation in neural rod midline formation during neurulation.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping