PUBLICATION

CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations

Authors
Zheng, X., Xu, C., Di Lorenzo, A., Kleaveland, B., Zou, Z., Seiler, C., Chen, M., Cheng, L., Xiao, J., He, J., Pack, M.A., Sessa, W.C., and Kahn, M.L.
ID
ZDB-PUB-100702-18
Date
2010
Source
J. Clin. Invest.   120(8): 2795-2804 (Journal)
Registered Authors
Pack, Michael, Seiler, Christoph, Zou, Zhiying
Keywords
none
MeSH Terms
  • Microtubule-Associated Proteins/physiology
  • Amino Acid Sequence
  • Zebrafish Proteins/chemistry
  • Zebrafish Proteins/genetics
  • Zebrafish Proteins/physiology*
  • Cardiovascular System/embryology*
  • Proto-Oncogene Proteins/chemistry
  • Proto-Oncogene Proteins/genetics
  • Proto-Oncogene Proteins/physiology*
  • Conserved Sequence
  • Membrane Proteins/chemistry
  • Membrane Proteins/genetics
  • Membrane Proteins/physiology*
  • Sequence Alignment
  • Humans
  • Apoptosis Regulatory Proteins/chemistry
  • Apoptosis Regulatory Proteins/genetics
  • Apoptosis Regulatory Proteins/physiology*
  • Protein Serine-Threonine Kinases/physiology*
  • Molecular Sequence Data
  • Zebrafish
  • Animals
  • Microfilament Proteins/metabolism
  • Signal Transduction/physiology*
  • Hemangioma, Cavernous, Central Nervous System/etiology*
  • Intracellular Signaling Peptides and Proteins/physiology*
  • Phosphorylation
PubMed
20592472 Full text @ J. Clin. Invest.
Abstract
Cerebral cavernous malformation is a common human vascular disease that arises due to loss-of-function mutations in genes encoding three intracellular adaptor proteins, cerebral cavernous malformations 1 protein (CCM1), CCM2, and CCM3. CCM1, CCM2, and CCM3 interact biochemically in a pathway required in endothelial cells during cardiovascular development in mice and zebrafish. The downstream effectors by which this signaling pathway regulates endothelial function have not yet been identified. Here we have shown in zebrafish that expression of mutant ccm3 proteins (ccm3Delta) known to cause cerebral cavernous malformation in humans confers cardiovascular phenotypes identical to those associated with loss of ccm1 and ccm2. CCM3Delta proteins interacted with CCM1 and CCM2, but not with other proteins known to bind wild-type CCM3, serine/threonine protein kinase MST4 (MST4), sterile 20-like serine/threonine kinase 24 (STK24), and STK25, all of which have poorly defined biological functions. Cardiovascular phenotypes characteristic of CCM deficiency arose due to stk deficiency and combined low-level deficiency of stks and ccm3 in zebrafish embryos. In cultured human endothelial cells, CCM3 and STK25 regulated barrier function in a manner similar to CCM2, and STKs negatively regulated Rho by directly activating moesin. These studies identify STKs as essential downstream effectors of CCM signaling in development and disease that may regulate both endothelial and epithelial cell junctions.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping