PUBLICATION

Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved

Authors
Rhodes, J.M., Bentley, F.K., Print, C.G., Dorsett, D., Misulovin, Z., Dickinson, E.J., Crosier, K.E., Crosier, P.S., and Horsfield, J.A.
ID
ZDB-PUB-100621-29
Date
2010
Source
Developmental Biology   344(2): 637-649 (Journal)
Registered Authors
Crosier, Kathy, Crosier, Phil, Horsfield, Jules
Keywords
Cohesin, Zebrafish, Cornelia de Lange syndrome, Myc
Datasets
GEO:GSE18795
MeSH Terms
  • Anaphase
  • Animals
  • Cell Cycle Proteins
  • Chromatids/metabolism
  • Chromosomal Proteins, Non-Histone
  • Chromosome Segregation
  • De Lange Syndrome/genetics
  • Drosophila/genetics
  • Drosophila/metabolism
  • Genes, myc
  • Humans
  • Repressor Proteins
  • S Phase
  • Zebrafish/genetics
  • Zebrafish/metabolism*
PubMed
20553708 Full text @ Dev. Biol.
Abstract
Contact between sister chromatids from S phase to anaphase depends on cohesin, a large multi-subunit protein complex. Mutations in sister chromatid cohesion proteins underlie the human developmental condition, Cornelia de Lange Syndrome. Roles for cohesin in regulating gene expression, sometimes in combination with CCCTC-binding factor (CTCF), have emerged. We analyzed zebrafish embryos null for cohesin subunit rad21 using microarrays to determine global effects of cohesin on gene expression during embryogenesis. This identified Rad21-associated gene networks that included myca (zebrafish c-myc), p53 and mdm2. In zebrafish, cohesin binds to the transcription start sites of p53 and mdm2, and depletion of either Rad21 or CTCF increased their transcription. In contrast, myca expression was strongly downregulated upon loss of Rad21 while depletion of CTCF had little effect. Depletion of Rad21 or the cohesin-loading factor Nipped-B in Drosophila cells also reduced expression of myc and Myc target genes. Cohesin bound the transcription start site plus an upstream predicted CTCF binding site at zebrafish myca. Binding and positive regulation of the c-Myc gene by cohesin is conserved through evolution, indicating this regulation is likely to be direct. The exact mechanism of regulation is unknown, but local changes in histone modification associated with transcription repression at the myca gene were observed in rad21 mutants.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping