PUBLICATION
            The lta4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans
- Authors
- Tobin, D.M., Vary, J.C. Jr, Ray, J.P., Walsh, G.S., Dunstan, S.J., Bang, N.D., Hagge, D.A., Khadge, S., King, M.C., Hawn, T.R., Moens, C.B., and Ramakrishnan, L.
- ID
- ZDB-PUB-100317-5
- Date
- 2010
- Source
- Cell 140(5): 717-730 (Journal)
- Registered Authors
- Moens, Cecilia, Ramakrishnan, Lalita, Tobin, David, Walsh, Gregory
- Keywords
- MOLIMMUNO, HUMDISEASE
- MeSH Terms
- 
    
        
        
            
                - Tuberculosis/genetics*
- Tuberculosis/immunology
- Zebrafish
- Epoxide Hydrolases/genetics*
- Animals
- Disease Models, Animal
- Leprosy/genetics*
- Leprosy/immunology
- Humans
- Genetic Predisposition to Disease
- Fish Diseases/genetics*
- Fish Diseases/immunology
 
- PubMed
- 20211140 Full text @ Cell
            Citation
        
        
            Tobin, D.M., Vary, J.C. Jr, Ray, J.P., Walsh, G.S., Dunstan, S.J., Bang, N.D., Hagge, D.A., Khadge, S., King, M.C., Hawn, T.R., Moens, C.B., and Ramakrishnan, L. (2010) The lta4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans. Cell. 140(5):717-730.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Exposure to Mycobacterium tuberculosis produces varied early outcomes, ranging from resistance to infection to progressive disease. Here we report results from a forward genetic screen in zebrafish larvae that identify multiple mutant classes with distinct patterns of innate susceptibility to Mycobacterium marinum. A hypersusceptible mutant maps to the lta4h locus encoding leukotriene A(4) hydrolase, which catalyzes the final step in the synthesis of leukotriene B(4) (LTB(4)), a potent chemoattractant and proinflammatory eicosanoid. lta4h mutations confer hypersusceptibility independent of LTB(4) reduction, by redirecting eicosanoid substrates to anti-inflammatory lipoxins. The resultant anti-inflammatory state permits increased mycobacterial proliferation by limiting production of tumor necrosis factor. In humans, we find that protection from both tuberculosis and multibacillary leprosy is associated with heterozygosity for LTA4H polymorphisms that have previously been correlated with differential LTB(4) production. Our results suggest conserved roles for balanced eicosanoid production in vertebrate resistance to mycobacterial infection.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    