PUBLICATION
Zebrafish Primordial Germ Cell Cultures Derived from vasa::RFP Transgenic Embryos
- Authors
- Fan, L., Moon, J., Wong, T.T., Crodian, J., and Collodi, P.
- ID
- ZDB-PUB-080630-7
- Date
- 2008
- Source
- Stem cells and development 17(3): 585-598 (Journal)
- Registered Authors
- Collodi, Paul, Crodian, Jennifer, Fan, Lianchun, Moon, Jesung
- Keywords
- none
- MeSH Terms
-
- Animals
- Animals, Genetically Modified
- Cell Count
- Cell Proliferation/drug effects
- Cell Separation
- Cells, Cultured
- Chemokine CXCL12/pharmacology
- DEAD-box RNA Helicases/metabolism*
- Embryo, Nonmammalian/cytology*
- Embryo, Nonmammalian/drug effects
- Embryonic Development/drug effects
- Flow Cytometry
- Germ Cells/cytology*
- Germ Cells/drug effects
- Luminescent Proteins/metabolism*
- Recombinant Fusion Proteins/metabolism*
- Recombinant Proteins/pharmacology
- Stem Cell Factor/metabolism*
- Stem Cell Factor/pharmacology
- Transgenes
- Zebrafish/embryology*
- Zebrafish Proteins/metabolism*
- PubMed
- 18576915 Full text @ Stem Cells Dev.
Citation
Fan, L., Moon, J., Wong, T.T., Crodian, J., and Collodi, P. (2008) Zebrafish Primordial Germ Cell Cultures Derived from vasa::RFP Transgenic Embryos. Stem cells and development. 17(3):585-598.
Abstract
Although embryonic germ (EG) cell-mediated gene transfer has been successful in the mouse for more than a decade, this approach is limited in other species due to the difficulty of isolating the small numbers of progenitors of germ cell lineage (PGCs) from early-stage embryos and the lack of information on the in vitro culture requirements of the cells. In this study, methods were established for the culture of PGCs obtained from zebrafish embryos. Transgenic embryos that express the red fluorescent protein (RFP) under the control of the PGC-specific vasa promoter were used, making it possible to isolate pure populations of PGCs by fluorescence-activated cell sorting (FACS) and to optimize the culture conditions by counting the number of fluorescent PGC colonies produced in different media. Cultures initiated from 26-somite-stage embryos contained the highest percentage of PGCs that proliferated in vitro to generate colonies. The effect of growth factors, including Kit ligand a and b (Kitlga and Kitlgb) and stromal cell-derived factor 1a and 1b (Sdf-1a and Sdf-1b), on PGC proliferation was studied. Optimal in vitro growth and survival of the zebrafish PGCs was achieved when recombinant Kitlga and Sdf-1b were added to the culture medium through transfected feeder cells, resulting in a doubling of the number of PGC colonies. Results from RT-PCR and in situ hybridization analysis demonstrated that PGCs maintained in culture expressed the kita receptor, even though receptor expression was not detected in PGCs isolated by FACS directly from dissociated embryos. In optimal growth conditions, the PGCs continued to proliferate for at least 4 months in culture. The capacity to establish long-term PGC cultures from zebrafish will make it possible to conduct in vitro studies of germ cell differentiation and EG cell pluripotency in this model species and may be valuable for the development of a cell-mediated gene transfer approach.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping