PUBLICATION
            Evolutionarily conserved gene family important for fat storage
- Authors
- Kadereit, B., Kumar, P., Wang, W.J., Miranda, D., Snapp, E.L., Severina, N., Torregroza, I., Evans, T., and Silver, D.L.
- ID
- ZDB-PUB-080102-2
- Date
- 2008
- Source
- Proceedings of the National Academy of Sciences of the United States of America 105(1): 94-99 (Journal)
- Registered Authors
- Evans, Todd
- Keywords
- adipocytes, diabetes, FIT, obesity, triglyceride
- MeSH Terms
- 
    
        
        
            
                - Sequence Homology, Amino Acid
- Evolution, Molecular*
- Molecular Sequence Data
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/physiology*
- Diabetes Mellitus, Experimental/metabolism
- Triglycerides/chemistry
- Triglycerides/metabolism
- Adipose Tissue/physiology*
- Conserved Sequence
- Liver/metabolism*
- Lipids/chemistry
- Gene Expression Regulation*
- Animals
- Models, Biological
- Adipocytes/metabolism
- Amino Acid Sequence
- Mice
- Zebrafish
- 3T3-L1 Cells/metabolism
 
- PubMed
- 18160536 Full text @ Proc. Natl. Acad. Sci. USA
            Citation
        
        
            Kadereit, B., Kumar, P., Wang, W.J., Miranda, D., Snapp, E.L., Severina, N., Torregroza, I., Evans, T., and Silver, D.L. (2008) Evolutionarily conserved gene family important for fat storage. Proceedings of the National Academy of Sciences of the United States of America. 105(1):94-99.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                The ability to store fat in the form of cytoplasmic triglyceride droplets is conserved from Saccharomyces cerevisiae to humans. Although much is known regarding the composition and catabolism of lipid droplets, the molecular components necessary for the biogenesis of lipid droplets have remained obscure. Here we report the characterization of a conserved gene family important for lipid droplet formation named fat-inducing transcript (FIT). FIT1 and FIT2 are endoplasmic reticulum resident membrane proteins that induce lipid droplet accumulation in cell culture and when expressed in mouse liver. shRNA silencing of FIT2 in 3T3-LI adipocytes prevents accumulation of lipid droplets, and depletion of FIT2 in zebrafish blocks diet-induced accumulation of lipid droplets in the intestine and liver, highlighting an important role for FIT2 in lipid droplet formation in vivo. Together these studies identify and characterize a conserved gene family that is important in the fundamental process of storing fat.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    