PUBLICATION
            The role of the SPT6 chromatin remodeling factor in zebrafish embryogenesis
- Authors
- Kok, F.O., Oster, E., Mentzer, L., Hsieh, J.C., Henry, C.A., and Sirotkin, H.I.
- ID
- ZDB-PUB-070629-6
- Date
- 2007
- Source
- Developmental Biology 307(2): 214-226 (Journal)
- Registered Authors
- Henry, Clarissa A., Kok, Fatma, Oster, Emma, Sirotkin, Howard
- Keywords
- Somitogenesis, Spt6, Notch, Zebrafish
- MeSH Terms
- 
    
        
        
            
                - Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Mutation
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism*
- Gene Expression Regulation, Developmental
- Transcription Factors/genetics
- Transcription Factors/metabolism*
- Signal Transduction
- In Situ Hybridization
- Chromosome Mapping
- Chromatin Assembly and Disassembly/genetics
- Chromatin Assembly and Disassembly/physiology*
- Zebrafish/embryology*
- Zebrafish/genetics
- Zebrafish/metabolism*
- Base Sequence
- Animals
- DNA/genetics
- Somites/cytology
- Somites/metabolism
- Epistasis, Genetic
 
- PubMed
- 17570355 Full text @ Dev. Biol.
            Citation
        
        
            Kok, F.O., Oster, E., Mentzer, L., Hsieh, J.C., Henry, C.A., and Sirotkin, H.I. (2007) The role of the SPT6 chromatin remodeling factor in zebrafish embryogenesis. Developmental Biology. 307(2):214-226.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Somitogenesis is a highly controlled process that results in segmentation of the paraxial mesoderm. Notch pathway activity in the presomitic mesoderm is fundamental for management of synchronized gene expression which is necessary for regulation of somitogenesis. We have isolated an embryonic lethal mutation, SBU2, that causes somite formation defects very similar to Notch pathway mutants. SBU2 mutants generate only 6-7 asymmetrically arranged somites. However, in contrast to Notch pathway mutants, these mutants do not maintain previously formed somite boundaries and by 24 hpf, almost no somite boundaries remain. Other developmental processes disrupted in SBU2 mutants include tail morphogenesis, muscle fiber elongation, pigmentation, circulatory system development and neural differentiation. We demonstrated that these defects are the result of a nonsense mutation within the spt6 gene. spt6 encodes a transcription elongation factor that genetically interacts with the Paf-1 chromatin remodeling complex. SBU2 mutant phenotypes could be rescued by microinjection of spt6 mRNA and microinjection of spt6 morpholinos phenocopied the mutation. Our real-time PCR analysis revealed that Spt6 is essential for the transcriptional response to activation of the Notch pathway. Analysis of sbu2;mib double mutants indicates that Spt6 deficiency suppresses the neurogenic effects of the mib. Altogether, these results demonstrate that Spt6 is critical for somite formation in zebrafish and suggest that some defects observed in spt6 mutants result from alterations in Notch signaling. However, additional Spt6 mutant phenotypes are likely caused by vital functions of Spt6 in other pathways.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    