PUBLICATION

Diversity of Ca(2+)-activated K(+) channel transcripts in inner ear hair cells

Authors
Beisel, K.W., Rocha-Sanchez, S.M., Ziegenbein, S.J., Morris, K.A., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., and Davis, R.L.
ID
ZDB-PUB-061116-10
Date
2007
Source
Gene   386(1-2): 11-23 (Journal)
Registered Authors
Keywords
Inner ear, Hair cells, Calcium activated potassium channel, α subunit, Alternative splicing
MeSH Terms
  • Alternative Splicing/genetics
  • Gene Expression Profiling*
  • Rats
  • Hair Cells, Auditory, Inner/metabolism*
  • Animals
  • Transcription, Genetic*
  • Humans
  • Genetic Variation*
  • Mice
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/biosynthesis
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics*
  • In Situ Hybridization
  • Conserved Sequence
PubMed
17097837 Full text @ Gene
Abstract
Hair cells express a complement of ion channels, representing shared and distinct channels that confer distinct electrophysiological signatures for each cell. This diversity is generated by the use of alternative splicing in the alpha subunit, formation of heterotetrameric channels, and combinatorial association with beta subunits. These channels are thought to play a role in the tonotopic gradient observed in the mammalian cochlea. Mouse Kcnma1 transcripts, 5' and 3' ESTs, and genomic sequences were examined for the utilization of alternative splicing in the mouse transcriptome. Comparative genomic analyses investigated the conservation of KCNMA1 splice sites. Genomes of mouse, rat, human, opossum, chicken, frog and zebrafish established that the exon-intron structure and mechanism of KCNMA1 alternative splicing were highly conserved with 6-7 splice sites being utilized. The murine Kcnma1 utilized 6 out of 7 potential splice sites. RT-PCR experiments using murine gene-specific oligonucleotide primers analyzed the scope and variety of Kcnma1 and Kcnmb1-4 expression profiles in the cochlea and inner ear hair cells. In the cochlea splice variants were present representing sites 3, 4, 6, and 7, while site 1 was insertionless and site 2 utilized only exon 10. However, site 5 was not present. Detection of KCNMA1 transcripts and protein exhibited a quantitative longitudinal gradient with a reciprocal gradient found between inner and outer hair cells. Differential expression was also observed in the usage of the long form of the carboxy-terminus tail. These results suggest that a diversity of splice variants exist in rodent cochlear hair cells and this diversity is similar to that observed for non-mammalian vertebrate hair cells, such as chicken and turtle.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping