PUBLICATION

High-Throughput In Vivo Screening for Bone Anabolic Compounds with Zebrafish

Authors
Fleming, A., Sato, M., and Goldsmith, P.
ID
ZDB-PUB-051031-7
Date
2005
Source
Journal of Biomolecular Screening   10(8): 823-831 (Journal)
Registered Authors
Fleming, Angeleen
Keywords
bone, osteoporosis, anabolic therapies, in vivo screening, zebrafish
MeSH Terms
  • Animals
  • Bone Density Conservation Agents/pharmacology*
  • Bone Density Conservation Agents/therapeutic use
  • Bone Remodeling/drug effects
  • Bone Remodeling/physiology
  • Calcification, Physiologic/drug effects*
  • Calcification, Physiologic/physiology
  • Cholecalciferol/analogs & derivatives
  • Cholecalciferol/pharmacology
  • Cholecalciferol/therapeutic use
  • Drug Evaluation, Preclinical/methods*
  • Etidronic Acid/pharmacology
  • Etidronic Acid/therapeutic use
  • Feasibility Studies
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
  • Models, Animal
  • Osteoblasts/drug effects
  • Osteoporosis/drug therapy
  • Parathyroid Hormone/pharmacology
  • Parathyroid Hormone/therapeutic use
  • Zebrafish*
PubMed
16234346 Full text @ J. Biomol. Screen.
Abstract
Osteoporosis and diseases of bone loss are a major public health problem for the present and the future since longevity and prevalence of the disease are increasing in all parts of the world. The bisphosphonates, widely used in the treatment of osteoporosis, act by inhibiting bone resorption. However, there are few agents that promote or increase bone formation in patients who have suffered substantial bone loss. To facilitate the identification of novel anabolic therapies, the authors have developed a rapid, high-throughput in vivo screen using larval zebrafish (Danio rerio) in which they are able to identify agents with anabolic effects in the skeleton within a 6-day time period. Vitamin D3 analogs and intermittent parathyroid hormone (PTH) result in dose-dependent increases in the formation of mineralized bone, whereas continuous exposure to PTH results in net bone loss. Because this model is fast, economical, and genetically tractable, it provides a powerful adjunct to mammalian models for the identification of new anabolic bone agents and offers the potential for genetic elucidation of pathways important in osteoblastic activity.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping