ZFIN ID: ZDB-PUB-040726-6
Processing of odor mixtures in the zebrafish olfactory bulb
Tabor, R., Yaksi, E., Weislogel, J.M., and Friedrich, R.W.
Date: 2004
Source: The Journal of neuroscience : the official journal of the Society for Neuroscience   24(29): 6611-6620 (Journal)
Registered Authors: Friedrich, Rainer, Tabor, Rico, Yaksi, Emre
Keywords: olfaction, odor mixture, information processing, olfactory glomerulus, mitral cell, neural circuit
MeSH Terms:
  • Action Potentials
  • Animals
  • Calcium/metabolism
  • Neurons/physiology
  • Odorants*
  • Olfactory Bulb/cytology
  • Olfactory Bulb/physiology*
  • Olfactory Pathways/metabolism
  • Patch-Clamp Techniques
  • Smell/physiology*
  • Zebrafish/metabolism
  • Zebrafish/physiology
PubMed: 15269273 Full text @ J. Neurosci.
Components of odor mixtures often are not perceived individually, suggesting that neural representations of mixtures are not simple combinations of the representations of the components. We studied odor responses to binary mixtures of amino acids and food extracts at different processing stages in the olfactory bulb (OB) of zebrafish. Odor-evoked input to the OB was measured by imaging Ca2+ signals in afferents to olfactory glomeruli. Activity patterns evoked by mixtures were predictable within narrow limits from the component patterns, indicating that mixture interactions in the peripheral olfactory system are weak. OB output neurons, the mitral cells (MCs), were recorded extra- and intracellularly and responded to odors with stimulus-dependent temporal firing rate modulations. Responses to mixtures of amino acids often were dominated by one of the component responses. Responses to mixtures of food extracts, in contrast, were more distinct from both component responses. These results show that mixture interactions can result from processing in the OB. Moreover, our data indicate that mixture interactions in the OB become more pronounced with increasing overlap of input activity patterns evoked by the components. Emerging from these results are rules of mixture interactions that may explain behavioral data and provide a basis for understanding the processing of natural odor stimuli in the OB.