PUBLICATION
            Expression of the FGF receptor 2 gene (fgfr2) during embryogenesis in the zebrafish Danio rerio
- Authors
- Tonou-Fujimori, N., Takahashi, M., Onodera, H., Kikuta, H., Koshida, S., Takeda, H., and Yamasu, K.
- ID
- ZDB-PUB-031001-6
- Date
- 2002
- Source
- Mechanisms of Development (Suppl.) 119: S173-S178 (Journal)
- Registered Authors
- Kikuta, Hiroshi, Koshida, Sumito, Yamasu, Kyo
- Keywords
- none
- MeSH Terms
- 
    
        
        
            
                - Gene Expression Regulation, Developmental
- Fibroblast Growth Factors/metabolism
- Somites/metabolism
- Embryonic Development
- Zebrafish*/genetics
- Zebrafish Proteins*/genetics
- Animals
- Receptor, Fibroblast Growth Factor, Type 2
 
- PubMed
- 14516681 Full text @ Mech. Dev.
            Citation
        
        
            Tonou-Fujimori, N., Takahashi, M., Onodera, H., Kikuta, H., Koshida, S., Takeda, H., and Yamasu, K. (2002) Expression of the FGF receptor 2 gene (fgfr2) during embryogenesis in the zebrafish Danio rerio. Mechanisms of Development. (Suppl.) 119:S173-S178.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                We isolated a full-length cDNA clone for the zebrafish homologue of fibroblast growth factor receptor (FGFR) 2. The deduced protein sequence is typical of vertebrate FGFRs in that it has three Ig-like domains in the extracellular region. The expression of fgfr2 is initiated during epiboly in the paraxial mesoderm. During early somitogenesis, fgfr2 expression was noted in the anterior neural plate as well as in newly formed somites. Whereas fgfr2 expression in somites is transient, it increases in the central nervous system (CNS), i.e. in the ventral telencephalon, anterior diencephalon, midbrain, and respective rhombomeres of the hindbrain, from the mid-somitogenesis stage. The dorsal telencephalon and the region around the midbrain-hindbrain boundary are devoid of fgfr2 expression. Essentially the same expression pattern is observed until 48 h post-fertilization in the CNS, although rhombomeric expression in the hindbrain is progressively confined to narrower stripes. After somitogenesis, fgfr2 expression was also observed in the lens, hypochord, endoderm, and fin mesenchyme. We compared the expression of the four fgfr genes (fgfr1-4) in the CNS of zebrafish embryos and show that fgfr1 is the only fgfr gene that is expressed in the dorsal telencephalon and isthmic region from which expression of fgfr2-4 is absent.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    