PUBLICATION
            Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain
- Authors
- Bellipanni, G., Rink, E., and Bally-Cuif, L.
- ID
- ZDB-PUB-030124-1
- Date
- 2002
- Source
- Mechanisms of Development 119: S215-S220 (Journal)
- Registered Authors
- Bally-Cuif, Laure, Bellipanni, Gianfranco, Rink, Elke
- Keywords
- none
- MeSH Terms
- 
    
        
        
            
                - Cloning, Molecular
- Brain/metabolism
- Neurons/metabolism
- Tryptophan Hydroxylase*
- Animals
- Diencephalon/metabolism
- Serotonin
- Zebrafish*/genetics
 
- PubMed
- 14516688 Full text @ Mech. Dev.
            Citation
        
        
            Bellipanni, G., Rink, E., and Bally-Cuif, L. (2002) Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Mechanisms of Development. 119:S215-S220.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase ( Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    