ZFIN ID: ZDB-PERS-120124-6
Martin, Benjamin
Email: benjamin.martin@stonybrook.edu
URL: http://you.stonybrook.edu/martinlab/
Affiliation: Benjamin Martin Lab
Address: Assistant Professor Department of Biochemistry and Cell Biology Stony Brook University 480 Life Sciences Building Stony Brook, NY 11794-5215
Country: United States
Phone: 6316321531
Fax: 6316321531


Mondal, C., Gacha-Garay, M.J., Larkin, K.A., Adikes, R.C., Di Martino, J.S., Chien, C.C., Fraser, M., Eni-Aganga, I., Agullo-Pascual, E., Cialowicz, K., Ozbek, U., Naba, A., Gaitas, A., Fu, T.M., Upadhyayula, S., Betzig, E., Matus, D.Q., Martin, B.L., Bravo-Cordero, J.J. (2022) A proliferative to invasive switch is mediated by srGAP1 downregulation through the activation of TGF-β2 signaling. Cell Reports. 40:111358
Paulissen, E., Martin, B.L. (2022) Myogenic regulatory factors myod and Myf5 are required for dorsal aorta formation and angiogenic sprouting. Developmental Biology. 490:134-143
Paulissen, E., Palmisano, N.J., Waxman, J., Martin, B.L. (2022) Somite morphogenesis is required for axial blood vessel formation during zebrafish embryogenesis. eLIFE. 11:
Morabito, R.D., Adikes, R.C., Matus, D.Q., Martin, B.L. (2021) Cyclin-Dependent Kinase Sensor Transgenic Zebrafish Lines for Improved Cell Cycle State Visualization in Live Animals. Zebrafish. 18(6):374-375
Adikes, R.C., Kohrman, A.Q., Martinez, M.A.Q., Palmisano, N.J., Smith, J.J., Medwig-Kinney, T.N., Min, M., Sallee, M.D., Ahmed, O.B., Kim, N., Liu, S., Morabito, R.D., Weeks, N., Zhao, Q., Zhang, W., Feldman, J.L., Barkoulas, M., Pani, A.M., Spencer, S.L., Martin, B.L., Matus, D.Q. (2020) Visualizing the metazoan proliferation-quiescence decision in vivo. eLIFE. 9:
Kinney, B.A., Al Anber, A., Row, R.H., Tseng, Y.J., Weidmann, M.D., Knaut, H., Martin, B.L. (2020) Sox2 and Canonical Wnt Signaling Interact to Activate a Developmental Checkpoint Coordinating Morphogenesis with Mesoderm Fate Acquisition. Cell Reports. 33:108311
D'Amico, S., Shi, J., Martin, B.L., Crawford, H.C., Petrenko, O., Reich, N.C. (2018) STAT3 is a master regulator of epithelial identity and KRAS-driven tumorigenesis. Genes & Development. 32:1175-1187
Row, R.H., Pegg, A., Kinney, B., Farr, G.H., Maves, L., Lowell, S., Wilson, V., Martin, B.L. (2018) BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLIFE. 7
Liu, T.L., Upadhyayula, S., Milkie, D.E., Singh, V., Wang, K., Swinburne, I.A., Mosaliganti, K.R., Collins, Z.M., Hiscock, T.W., Shea, J., Kohrman, A.Q., Medwig, T.N., Dambournet, D., Forster, R., Cunniff, B., Ruan, Y., Yashiro, H., Scholpp, S., Meyerowitz, E.M., Hockemeyer, D., Drubin, D.G., Martin, B.L., Matus, D.Q., Koyama, M., Megason, S.G., Kirchhausen, T., Betzig, E. (2018) Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science (New York, N.Y.). 360(6386):
So, J., Khaliq, M., Evason, K., Ninov, N., Martin, B.L., Stainier, D.Y.R., Shin, D. (2017) Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating Notch activity. Hepatology (Baltimore, Md.). 67(6):2352-2366
Goto, H., Kimmey, S.C., Row, R.H., Matus, D.Q., Martin, B.L. (2017) FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step EMT. Development (Cambridge, England). 144(8):1412-1424
Row, R.H., Martin, B.L. (2017) itFISH: Enhanced Staining by Iterative Fluorescent In Situ Hybridization. Zebrafish. 14(6):578-580
Fu, Q., Martin, B.L., Matus, D.Q., Gao, L. (2016) Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nature communications. 7:11088
Row, R.H., Tsotras, S.R., Goto, H., Martin, B.L. (2016) The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues. Development (Cambridge, England). 143(2):244-54
Ulrich, F., Carretero-Ortega, J., Menéndez, J., Narvaez, C., Sun, B., Lancaster, E., Pershad, V., Trzaska, S., Véliz, E., Kamei, M., Prendergast, A., Kidd, K.R., Shaw, K.M., Castranova, D.A., Pham, V.N., Lo, B.D., Martin, B.L., Raible, D.W., Weinstein, B.M., Torres-Vazquez, J. (2016) Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development (Cambridge, England). 143(1):147-59
Taibi, A., Mandavawala, K.P., Noel, J., Okoye, E.V., Milano, C.R., Martin, B.L., and Sirotkin, H.I. (2013) Zebrafish churchill regulates developmental gene expression and cell migration. Developmental Dynamics : an official publication of the American Association of Anatomists. 242(6):614-21
So, J., Martin, B.L., Kimelman, D., and Shin, D. (2013) Wnt/beta-catenin signaling cell-autonomously converts non-hepatic endodermal cells to a liver fate. Biology Open. 2(1):30-36
Veldman, M.B., Zhao, C., Gomez, G.A., Lindgren, A.G., Huang, H., Yang, H., Yao, S., Martin, B.L., Kimelman, D., and Lin, S. (2013) Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor etv2. PLoS Biology. 11(6):e1001590
McCarroll, M.N., Lewis, Z.R., Culbertson, M.D., Martin, B.L., Kimelman, D., and Nechiporuk, A.V. (2012) Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development (Cambridge, England). 139(15):2740-2750
Martin, B.L., and Kimelman, D. (2012) Canonical Wnt Signaling Dynamically Controls Multiple Stem Cell Fate Decisions during Vertebrate Body Formation. Developmental Cell. 22(1):223-232
Row, R.H., Maître, J.L., Martin, B.L., Stockinger, P., Heisenberg, C.P., and Kimelman, D. (2011) Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Developmental Biology. 354(1):102-110
Martin, B.L., and Kimelman, D. (2010) Brachyury establishes the embryonic mesodermal progenitor niche. Genes & Development. 24(24):2778-2783
Martin, B.L., and Kimelman, D. (2008) Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Developmental Cell. 15(1):121-133