Person

Soussi-Yanicostas, Nadia

Person ID
ZDB-PERS-040730-1
Email
nadia.soussi@inserm.fr
URL
http://neurodiderot.org/index.php/soussi-en/
Affiliation
Address
Nadia Soussi-Yanicostas Research Director at CNRS Team Neurodevelopment and Neurodevelpmental Disorders in Zebrafish Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France Hôpital Robert Debré, 48 bd Sérurier, 75019 PARIS Tel: 01 40 03 19 31 Mobile : 06 98 24 40 82 Site: http://neurodiderot.org/index.php/soussi-en/ Fax: 01 40 03 19 20 E-mail : nadia.soussi@inserm.fr
Country
Phone
33 1 40 03 19 31
Fax
33 1 45 70 99 90
ORCID ID
0000-0001-7734-9401
Biography and Research Interest
Nadia Soussi-Yanicostas is a French neuroscientist and geneticist renowned for her research into the molecular and cellular basis of normal neurodevelopment and brain pathologies, particularly childhood epilepsy. She is a senior research director (DR1) at the French National Centre for Scientific Research (CNRS). In 2024, she was awarded the Chevalier de l'Ordre National du Mérite in recognition of her major contributions to neuroscience research.
Nadia Soussi-Yanicostas completed her secondary education in Safi, Morocco and her postgraduate studies at the Université Paris Cité in Paris. In 1991, she defended her thesis on the differentiation of human skeletal muscle during development at the Université Paris Cité under the supervision of Gillian Butler-Browne. She then carried out postdoctoral research in the laboratory of François Gros at the Institut Pasteur in Paris, where she cloned and characterised the multigene complex comprising several genes encoding the different isoforms of human myosin heavy chain. She went on to do a second postdoctoral fellowship in the laboratory of Jean Weissenbach and then Christine Petit, also at the Institut Pasteur in Paris. There she demonstrated the functions of anosmin-1, a protein encoded by the KAL1 gene, which is responsible for the X-linked form of Kallmann de Morsier syndrome. She was recruited to the CNRS in 1994. In 2005, as a winner of the Inserm-Avenir programme, she set up her own team at the Pitié-Salpêtrière Hospital in Paris, where she introduced the use of the zebrafish model in biomedical research. She installed the first zebrafish facility on the Pitié-Samlpêtrière site. Between 2005 and 2024, she studied a number of neurological diseases, including Kallmann syndrome, spastic paraplegia, spinocerebellar ataxia type 7, tauopathies, infantile epilepsy, the role of certain pesticides on neurodevelopment and the role of the zebrafish.
Between 2005 and 2024, she studied a number of neurological diseases, including Kallmann syndrome, spastic paraplegia, spinocerebellar ataxia type 7, tauopathies, childhood epilepsy, the role of certain pesticides in neurodevelopment and the transgenerational effects of antiepileptic drugs. In 2018, she was promoted to directeur de recherches de deuxième classe and then to directrice de recherches première classe at the CNRS in 2023.
• Nadia Soussi-Yanicostas has been awarded the insignia of Chevalier de l'Ordre National du Mérite in recognition of her service as a neuroscientist and her contribution to the scientific community.
• Nadia Soussi-Yanicostas is pilot scientific adviser for neurosciences and disorders of the nervous system at the High Council for Research and Higher Education (HCERES).
Honours and awards
• 2005: Prize of the Inserm Avenir programme
• 2005: Fondation pour le Recherche Médicale Programme Prize
• 2024: Institut de Recherche en Santé Publique Programme Prize
• 2024: Award of the Chevalier de l'Ordre National du Mérite

Supervised thesis

Thèse de Doctorat de l’Université Paris Cité en 2021. Julie Somkhit. (http://www.theses.fr/s208315).
Thèse de Doctorat de l’Université Paris Cité en 2021. Alexandre Brenet. https://theses.fr/2021UNIP7135.
Thèse de Doctorat de l’Université Paris-Cité en 2019. Rahma Hassan Abdi. https://theses.fr/s180449.
Thèse de Doctorat de l’Université Paris 7, 2014. Maryam Alavi Naini https://theses.fr/187363455
Thèse de Doctorat de l’Université Paris 6 , 2009. Besma AYari. https://theses.fr/2009PA066243

Categories

French/Moroccan neuroscientist
Biologist
Research director at the French National Centre for Scientific Research (CNRS)
PhD in biology from the Université Paris Cité
Qualified to direct research at the Université Paris Cité
Winner of the INSERM-Avenir programme (Institut National de la Recherche Médicale)
Award of the Chevalier de l'Ordre National du Mérite





Keywords: Epilepsy; Microglia; Zebrafish; Neuroprotection; Dravet syndrome; Encephalopathies; Pesticides; Synapses; Tauopathies; Neuro-inflammation; Tau; Abeta; Behaviour; Organophosphorus, Calcium imaging; Autism; Genetic models of Epilepsy in zebrafish.
Publications
Non-Zebrafish Publications
Brenet A, et al. (https://pubmed.ncbi.nlm.nih.gov/33154418/). Sci Rep. 2021 Mar 9;11(1):5917.
Brenet A, et al. (https://pubmed.ncbi.nlm.nih.gov/33153847/). Chemosphere. 2021 Feb;265:128781.
Swaminathan A, et al.https://pubmed.ncbi.nlm.nih.gov/29861134/). Curr Biol. 2018 Jun 18;28(12):1924-1937.
Naini SMA, et al.’ https://pubmed.ncbi.nlm.nih.gov/29568517/). Transl Neurodegener. 2020 Dec 20;9(1):45.
Sepulveda-Diaz JE, et al. https://pubmed.ncbi.nlm.nih.gov/25842390/. Brain. 2015 May;138(Pt 5):1339-54.
Van Steenwinckel J, et al. (https://pubmed.ncbi.nlm.nih.gov/31665242/) Brain. 2019 Dec 1;142(12):3806-3833.
Mairesse J, et al. (https://pubmed.ncbi.nlm.nih.gov/30506969/). Glia. 2019 Feb;67(2):345-359.
Cintra L et al. (https://pubmed-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/38820680/) Epilepsy Behav. 2024.
Brenet Alexandre et al. (https://pubmed-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/38667299/). Cells. 2024 Apr 15;13(8):684.
Somkhit J, et al. (https://pubmed.ncbi.nlm.nih.gov/35897817/) Int J Mol Sci. 2022 Jul 26;23(15):8240.
Zebrafish as a Model for Neurological Disorders. Soussi-Yanicostas N. (https://pubmed.ncbi.nlm.nih.gov/35457137/). Int J Mol Sci. 2022 Apr 13;23(8):4321.
Yanicostas C, Soussi-Yanicostas N ‘’SDHI Fungicide Toxicity and Associated Adverse Outcome Pathways: What Can Zebrafish Tell Us?’’. (https://www.mdpi.com/1422-0067/22/22/12362). . Int J Mol Sci. 2021 Nov 16;22(22):12362.
Maupu C, et al. (https://pubmed.ncbi.nlm.nih.gov/33529768/). Neurobiol Dis. 2021 May;152:105276.
Somkhit J, et al. (https://pubmed.ncbi.nlm.nih.gov/32364833/). Zebrafish. 2020 Aug;17(4):268-270.
Hassan-Abdi R, et al. (https://pubmed.ncbi.nlm.nih.gov/31787873/). Front Neurosci. 2019 Nov 7;13:1199.
Brenet A, et al. (https://pubmed.ncbi.nlm.nih.gov/31590334/). Cells. 2019 Oct 4;8(10):1199.
Dodé C, et al. (https://pubmed.ncbi.nlm.nih.gov/12627230/). Nat Genet. 2003 Apr;33(4):463-5.
Alavi Naini SM, Soussi-Yanicostas N.(https://pubmed.ncbi.nlm.nih.gov/30619849/). Front Cell Dev Biol. 2018 Dec 20;6:163.
Samarut É, et al. https://pubmed.ncbi.nlm.nih.gov/30324621/. Epilepsia. 2018 Nov;59(11):2061-2074.
Soussi-Yanicostas N, et al. https://pubmed.ncbi.nlm.nih.gov/12007408/. Cell. 2002 Apr 19;109(2):217-28.
Auvin S, et al. https://pubmed.ncbi.nlm.nih.gov/29512885/. Epilepsia. 2018 Apr;59(4):e45-e50. doi: 10.1111/epi.14038. Epub 2018 Mar 7. PMID: 29512885
Lebcir A, et al. https://pubmed.ncbi.nlm.nih.gov/27673347/. Zebrafish. 2016 Dec;13(6):535-536.
Alavi Naini SM, Soussi-Yanicostas N. ‘https://pubmed.ncbi.nlm.nih.gov/26576216/. Oxid Med Cell Longev. 2015;2015:151979.
Ghoumid J, et al. https://pubmed.ncbi.nlm.nih.gov/23466526/ Hum Mol Genet. 2013 Jul 1;22(13):2652-61.
Martin E, et al. https://www.sciencedirect.com/science/article/abs/pii/S0969996112002446. Neurobiol Dis. 2012 Dec;48(3):299-308.
Ayari B, et al. https://pubmed.ncbi.nlm.nih.gov/22472058/. Brain Res Bull. 2012 Jul 1;88(4):345-53.
Yanicostas C, et al. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050705). PLoS One. 2012;7(11):e50705.
Yanicostas C, et al. https://pubmed.ncbi.nlm.nih.gov/21640674/. Semin Fetal Neonatal Med. 2011 Aug;16(4):175-80.
Ayari B, et al. https://www.liebertpub.com/doi/10.1089/neu.2009.0972. J Neurotrauma. 2010 May;27(5):959-72.
García-González D, et al. ‘Dynamic roles of FGF-2 and Anosmin-1 in the migration of neuronal precursors from the subventricular zone during pre- and postnatal development'. (https://www.sciencedirect.com/science/article/abs/pii/S0014488610000117). Exp Neurol. 2010 Apr;222(2):285-95.
Yanicostas C, et al. ‘Anosmin-1a is required for fasciculation and terminal targeting of olfactory neuron axons in the zebrafish olfactory system’. (https://pubmed.ncbi.nlm.nih.gov/19464344/). Mol Cell Endocrinol. 2009 Nov 27;312(1-2):53-60.
Puverel S, et al. ‘Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice’. (https://pubmed.ncbi.nlm.nih.gov/19003791/). J Comp Neurol. 2009 Jan 10;512(2):232-42.
Bribián A, et al. ‘A novel role for anosmin-1 in the adhesion and migration of oligodendrocyte precursors’. (https://pubmed.ncbi.nlm.nih.gov/18814310/). Dev Neurobiol. 2008 Nov;68(13):1503-16.
Clemente D, et al. ‘Expression pattern of Anosmin-1 durng pre- and postnatal rat brain development’. (https://pubmed.ncbi.nlm.nih.gov/18729208/). Dev Dyn. 2008 Sep;237(9):2518-28.
Yanicostas C, et al. ‘Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium’. (https://pubmed.ncbi.nlm.nih.gov/18585376/) . Dev Biol. 2008 Aug 15;320(2):469-79.
Ayari B, Soussi-Yanicostas N. ‘FGFR1 and anosmin-1 underlying geneically distinct forms of Kallmann syndrome are co-expressed and interact in olfactory bulbs’. (https://pubmed.ncbi.nlm.nih.gov/17186267/. Dev Genes Evol. 2007 Feb;217(2):169-75.
Ernest S, et al. ‘Localization of anosmin-1a and anosmin-1b in the inner ear and neuromasts of zebrafish’. (https://www.sciencedirect.com/science/article/abs/pii/S1567133X06001669. Gene Expr Patterns. 2007 Jan;7(3):274-81.
Bribián A, et al. ‘Anosmin-1 modulates the FGF-2-dependent migration of oligodendrocyte precursors in the developing optic nerve’. (https://pubmed.ncbi.nlm.nih.gov/16876430/). Mol Cell Neurosci. 2006 Sep;33(1):2-14.

Dellovade TL, et al. ‘Anosmin-1 immunoreactivity during embryogeesis in a primitive eutherian mammal’. (https://pubmed.ncbi.nlm.nih.gov/12586422/). Brain Res Dev Brain Res. 2003 Feb 16;140(2):157-67.
Hardelin JP, et al. Kallmann syndrome. (https://pubmed.ncbi.nlm.nih.gov/10868244/). Adv Otorhinolaryngol. 2000; 56:268-74.
Hardelin JP, et al. ‘Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome’. (https://pubmed.ncbi.nlm.nih.gov/10340754/) Dev Dyn. 1999 May;215(1):26-44.
Soussi-Yanicostas N, et al. ‘Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner’. (https://pubmed.ncbi.nlm.nih.gov/9730987/. J Cell Sci. 1998 Oct;111 ( Pt 19):2953-65.
Hardelin, J-P., et al. ‘Molecular approach to the pathogenesis of renal anomalies in the Kallmann de Morsier syndrome and in the branchio-oto-renal syndrome’. Advances in Nephrology 1998, 28, 419-428.
Hardelin JP, et al. ‘Molecular approach to the pathogenesis of renal anomalies in Kallmann's syndrome and in the branchio-oto-renal syndrome’. (https://pubmed.ncbi.nlm.nih.gov/9890002/). Advances in Nephrology 1998, 28, 419-428.
Soussi-Yanicostas N, et al. ‘Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by definite neuronal cell populations in the central nervous system’. (https://journals.biologists.com/jcs/article/109/7/1749/24838/Initial-characterization-of-anosmin-1-a-putative) J Cell Sci. 1996 Jul;109 ( Pt 7):1749-57.
Soussi-Yanicostas N., et al. ‘Approche moléculaire de la pathogénie d’un déficit héréditaire de l’olfaction : le syndrome de Morsier lié au chromosome X’. (https://www.sciencedirect.com/science/article/abs/pii/0924420496833853. Annales de l’Institut Pasteur 1995, 6, 282-291.
Hamida CB, et al. ‘Expression of myosin isoforms and of desmin, vimentin and titin in Tunisian Duchenne-like autosomal recessive muscular dystrophy’. (https://pubmed.ncbi.nlm.nih.gov/8064303/). J Neurol Sci. 1994 May;123(1-2):114-21. doi: 10.1016/0022-510x(94)90212-7.
Ben Hamida C, et al. ‘Biochemical and immunocytochemical analysis in chronic proximal spinal muscular atrophy. (https://pubmed.ncbi.nlm.nih.gov/8170486/). Muscle Nerve’. 1994 Apr;17(4):400-10. doi: 10.1002/mus.880170407.
Soussi-Yanicostas N,et al. Five skeletal myosin heavy chain genes are organized as a multigene complex in the human genome. (https://pubmed.ncbi.nlm.nih.gov/8518795/). Hum Mol Genet. 1993 May;2(5):563-9.
Soussi-Yanicostas N, et al.’Evolution of muscle specific proteins in Werdnig-Hoffman's disease’. (https://pubmed.ncbi.nlm.nih.gov/1387678/). J Neurol Sci. 1992 May;109(1):111-20.
Soussi-Yanicostas N, Butler-Browne GS. ‘Transcription of the embryonic myosin light chain gene is restricted to type II muscle fibers in human adult masseter’. (https://www.semanticscholar.org/paper/Transcription-of-the-embryonic-myosin-light-chain-Soussi-Yanicostas-Butler-Browne/cd4acc00e79e415a55968c4953e921200a13638d). Dev Biol. 1991 Oct;147(2):374-80. doi: 10.1016/0012-1606(91)90295-e.
Soussi-Yanicostas N, et al. ‘Modification in the expression and localization of contractile and cytoskeletal proteins in Schwartz-Jampel syndrome’. (https://pubmed.ncbi.nlm.nih.gov/1919599/). J Neurol Sci. 1991 Jul;104(1):64-73.
Rotter M, Zimmerman K, et al. ‘The human embryonic myosin alkali light chain gene: use of alternative promoters and 3' non-coding regions’. (https://pmc.ncbi.nlm.nih.gov/articles/PMC328364/). Nucleic Acids Res. 1991 Apr 11;19(7):1497-504.