Person
Lassiter, Christopher S.
|
Biography and Research Interest
My research interests lie in the field of developmental biology. The mechanisms by which a single cell can give rise to a complex organism have always amazed me. Cells must differentiate and signal to each other, turning on vast networks of genes while coordinating growth, shape, and function. Much research has been done on small range signaling molecules during development. During my graduate work, I became interested in molecules that signal over longer ranges: hormones.
My work has focused on the estrogen signaling pathway. Estrogen is an important molecule in the developing embryo and in the adult vertebrate. This small molecule signals in many tissues of the body, including reproductive tissues, adipose, brain, bone, and heart. Estrogen signals by binding to estrogen receptors. My work has involved characterizing the estrogen receptors along with aromatase, the gene that codes for estrogen synthesis. The expression pattern of aromatase in the embryonic brain and its control by steroid hormones is well conserved among vertebrates. The pleiotropic effects of estrogen in the developing brain could affect neural architecture resulting in morphological and behavioral effects well into adulthood.
My work has focused on the estrogen signaling pathway. Estrogen is an important molecule in the developing embryo and in the adult vertebrate. This small molecule signals in many tissues of the body, including reproductive tissues, adipose, brain, bone, and heart. Estrogen signals by binding to estrogen receptors. My work has involved characterizing the estrogen receptors along with aromatase, the gene that codes for estrogen synthesis. The expression pattern of aromatase in the embryonic brain and its control by steroid hormones is well conserved among vertebrates. The pleiotropic effects of estrogen in the developing brain could affect neural architecture resulting in morphological and behavioral effects well into adulthood.
Non-Zebrafish Publications
Abidi F, Jacquot S, Lassiter C, Trivier E, Hanauer A, Schwartz C. 1999. Novel Mutations in Rsk-2, the gene for Coffin-Lowry Syndrome (CLS). Eur J Hum Gen 7:20-26.