ZFIN ID: ZDB-PERS-000731-3
Muto, Akira
Email: akimuto@nig.ac.jp
URL: http://akiramuto.net
Address: Division of Molecular and Developmental Biology National Insititute of Genetics (NIG) Yata 1111 Mishima Shizuoka 411-8540 Japan
Phone: +81-55-981-6739
Fax: +81-55-981-5827

1990 University of Tokyo, B.S.
1995 Osaka University, Ph.D.

1995 RIKEN Research Fellow (Mikoshiba lab)
1996 Japan Science and Technology (JST) Research Fellow (MIkoshiba lab)
2000 UCSF Physiology Department, Postdoctoral Fellow (Baier lab)
2007 National Institute of Genetics (NIG), Research Scientist (Kawakami lab)
2011-present: National Institute of Genetics (NIG), Assistant Professor (Kawakami lab)

Research Interest:
Cognitive neuroscience

Diaz Verdugo, C., Myren-Svelstad, S., Aydin, E., Van Hoeymissen, E., Deneubourg, C., Vanderhaeghe, S., Vancraeynest, J., Pelgrims, R., Cosacak, M.I., Muto, A., Kizil, C., Kawakami, K., Jurisch-Yaksi, N., Yaksi, E. (2019) Glia-neuron interactions underlie state transitions to generalized seizures. Nature communications. 10:3830
Ogawa, Y., Shiraki, T., Asano, Y., Muto, A., Kawakami, K., Suzuki, Y., Kojima, D., Fukada, Y. (2019) Six6 and Six7 coordinately regulate expression of middle-wavelength opsins in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 116(10):4651-4660
Muto, A., Kawakami, K. (2018) Ablation of a Neuronal Population Using a Two-photon Laser and Its Assessment Using Calcium Imaging and Behavioral Recording in Zebrafish Larvae. Journal of visualized experiments : JoVE. (136)
Lal, P., Tanabe, H., Suster, M.L., Ailani, D., Kotani, Y., Muto, A., Itoh, M., Iwasaki, M., Wada, H., Yaksi, E., Kawakami, K. (2018) Identification of a neuronal population in the telencephalon essential for fear conditioning in zebrafish. BMC Biology. 16:45
Muto, A., Lal, P., Ailani, D., Abe, G., Itoh, M., Kawakami, K. (2017) Activation of the hypothalamic feeding centre upon visual prey detection. Nature communications. 8:15029
Kawakami, K., Asakawa, K., Muto, A., Wada, H. (2016) Tol2-mediated transgenesis, gene trapping, enhancer trapping, and Gal4-UAS system. Methods in cell biology. 135:19-37
Kawakami, K., Asakawa, K., Hibi, M., Itoh, M., Muto, A., Wada, H. (2016) Gal4 Driver Transgenic Zebrafish: Powerful Tools to Study Developmental Biology, Organogenesis, and Neuroscience. Advances in genetics. 95:65-87
Muto, A., Kawakami, K. (2016) Calcium Imaging of Neuronal Activity in Free-Swimming Larval Zebrafish. Methods in molecular biology (Clifton, N.J.). 1451:333-41
Yokota, Y., Nakajima, H., Wakayama, Y., Muto, A., Kawakami, K., Fukuhara, S., Mochizuki, N. (2015) Endothelial Ca(2+) oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo. eLIFE. 4
Ogino, K., Low, S.E., Yamada, K., Saint-Amant, L., Zhou, W., Muto, A., Asakawa, K., Nakai, J., Kawakami, K., Kuwada, J.Y., Hirata, H. (2015) RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels. Proceedings of the National Academy of Sciences of the United States of America. 112(9):2859-64
Jia, S., Muto, A., Orisme, W., Henson, H.E., Parupalli, C., Ju, B., Baier, H., and Taylor, M.R. (2014) Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation. Human molecular genetics. 23(11):2981-94
Muto, A., Taylor, M.R., Suzawa, M., Korenbrot, J.I., and Baier, H. (2013) Glucocorticoid receptor activity regulates light adaptation in the zebrafish retina. Frontiers in neural circuits. 7:145
Muto, A., and Kawakami, K. (2013) Prey capture in zebrafish larvae serves as a model to study cognitive functions. Frontiers in neural circuits. 7:110
Ziv, L., Muto, A., Schoonheim, P.J., Meijsing, S.H., Strasser, D., Ingraham, H.A., Schaaf, M.J., Yamamoto, K.R., and Baier, H. (2013) An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Molecular psychiatry. 18(6):681-91
Muto, A., Ohkura, M., Abe, G., Nakai, J., and Kawakami, K. (2013) Real-Time Visualization of Neuronal Activity during Perception. Current biology : CB. 23(4):307-311
Umeda, K., Shoji, W., Sakai, S., Muto, A., Kawakami, K., Ishizuka, T., and Yawo, H. (2013) Targeted expression of a chimeric channelrhodopsin in zebrafish under regulation of Gal4-UAS system. Neuroscience research. 75(1):69-75
Hirata, H., Wen, H., Kawakami, Y., Naganawa, Y., Ogino, K., Yamada, K., Saint-Amant, L., Low, S.E., Cui, W.W., Zhou, W., Sprague, S.M., Asakawa, K., Muto, A., Kawakami, K., and Kuwada, J.Y. (2012) Connexin39.9 is necessary for coordinated activation of slow-twitch muscle and normal behavior in zebrafish. The Journal of biological chemistry. 287(2):1080-9
Muto, A., and Kawakami, K. (2011) Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system. Communicative & integrative biology. 4(5):566-568
Muto, A., Ohkura, M., Kotani, T., Higashijima, S.I., Nakai, J., and Kawakami, K. (2011) Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 108(13):5425-5430
Kawakami, K., Abe, G., Asada, T., Asakawa, K., Fukuda, R., Ito, A., Lal, P., Mouri, N., Muto, A., Suster, M.L., Takakubo, H., Urasaki, A., Wada, H., and Yoshida, M. (2010) zTrap: zebrafish gene trap and enhancer trap database. BMC Developmental Biology. 10:105
Sumbre, G., Muto, A., Baier, H., and Poo, M.M. (2008) Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature. 456(7218):102-106
Muto, A., Orger, M.B., Wehman, A.M., Smear, M.C., Kay, J.N., Page-McCaw, P.S., Gahtan, E., Xiao, T., Nevin, L.M., Gosse, N.J., Staub, W., Finger-Baier, K., Baier, H. (2005) Forward Genetic Analysis of Visual Behavior in Zebrafish. PLoS Genetics. 1(5):e66
Page-McCaw, P.S., Chung, S.C., Muto, A., Roeser, T., Staub, W., Finger-Baier, K.C., Korenbrot, J.I., and Baier, H. (2004) Retinal network adaptation to bright light requires tyrosinase. Nature Neuroscience. 7(12):1329-1336
Orger, M.B., Gahtan, E., Muto, A., Page-McCaw, P., Smear, M.C., and Baier, H. (2004) Behavioral screening assays in zebrafish. The Zebrafish: Genetics, Genomics and Informatics, 2nd ed., Methods Cell Biol.. 77:53-68

Muto A, Mikoshiba K. Activation of inositol 1,4,5-trisphosphate receptors induces transient changes in cell shape of fertilized Xenopus eggs. Cell Motil Cytoskeleton. 1998;39(3):201-8

Kume S, Muto A, Inoue T, Suga K, Okano H, Mikoshiba K. Role of inositol 1,4,5-trisphosphate receptor in ventral signaling in Xenopus embryos. Science. 1997 Dec 12;278(5345):1940-3

Kume S, Muto A, Okano H, Mikoshiba K. Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis. Mech Dev. 1997 Aug;66(1-2):157-68.

Sayers LG, Miyawaki A, Muto A, Takeshita H, Yamamoto A, Michikawa T, Furuichi T, Mikoshiba K. Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor-green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation. Biochem J. 1997 Apr 1;323 ( Pt 1):273-80.

Kume S, Yamamoto A, Inoue T, Muto A, Okano H, Mikoshiba K. Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis. Dev Biol. 1997 Feb 15;182(2):228-39

Muto A, Kume S, Inoue T, Okano H, Mikoshiba K. Calcium waves along the cleavage furrows in cleavage-stage Xenopus embryos and its inhibition by heparin. J Cell Biol. 1996 Oct;135(1):181-90

Honda Z, Takano T, Hirose N, Suzuki T, Muto A, Kume S, Mikoshiba K, Itoh K, Shimizu T. Gq pathway desensitizes chemotactic receptor-induced calcium signaling via inositol trisphosphate receptor down-regulation. J Biol Chem. 1995 Mar 3;270(9):4840-4

Kume S, Muto A, Aruga J, Nakagawa T, Michikawa T, Furuichi T, Nakade S, Okano H, Mikoshiba K. The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs. Cell. 1993 May 7;73(3):555-70