IMAGE

Fig. 2

ID
ZDB-IMAGE-190717-19
Source
Figures for Ye et al., 2019
Image
Figure Caption

Fig. 2

Using live tracing to study the correlation between the initial PGC numbers and sexual development. a Representative images of PGC-less and PGC-rich embryos at 1 dpf (a1, a5), 5 dpf (a2, a6), and 7 dpf (a3, a7). b Representative images of PGC-less and PGC-rich larva fish at 11 dpf (b1, b4), 14 dpf (b2, b5), and 20 dpf (b3, b6). c Frequency distribution of PGC number at 1 dpf; two boxes with dashed frame label the selected population of “PGC-less” and “PGC-rich.” The lateral areas of gonads were calculated and were shown at the lower right corner of images in a and bd The sex ratio in the population of PGC-less and PGC-rich embryos. e Confocal microscopy of small and big gonads at 20 dpf with Tg(piwil1:egfp-UTRnos3)ihb327Tg transgenic fish. e1 Confocal image of small gonads. e2Higher magnification of a representative image of small gonad displaying combined channels of DAPI, F-actin, and EGFP. e3 Magnification image showing the nuclei of gonocyte in a small gonad. e4 Confocal image of big gonads. e5e6 Higher magnification of representative images of big gonads displaying combined channels of DAPI, F-actin, and EGFP. e5 shows an example in which the germ cells have an irregular shape of nuclei; e6shows an example in which chromatin nucleolus-stage oocytes exist. e7 Magnification image showing cells with irregular shape of nuclei. e8 Magnification image showing that the nuclei of gonocyte were similar to the one in a small gonad

Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Mar. Biotechnol.