IMAGE

Fig. 4

ID
ZDB-IMAGE-090602-24
Source
Figures for Warga et al., 2009
Image
Figure Caption

Fig. 4 Not All Blood Is Committed to a Unipotential Lineage at 26 hr
(A–E) Single circulating blood cells give rise to neutrophil and erythrocyte progeny. (A–C) A newly photoconverted blood cell (arrow), within a ventral gastrula-derived clone. (A) Red wavelength, (B) green wavelength (note the other blood cells), and (C) composite image. (D and E) The resulting red-labeled clone at 48 hr included (D) circulating erythrocytes and (E) two neutrophils attached to the lumen of a blood vessel.
(F–I) Single macrophage cells give rise to macrophage progeny. (F–H) High-magnification view of an individual macrophage (arrow) in the process of being photoconverted from (F) green to (G) red. Nearby, another green-labeled macrophage (upper left panel) is preparing to divide. (H) Low-magnification view of the entire Kaede clone showing the newly photoconverted macrophage (arrow) among other green-labeled macrophages and out-of-focus endoderm and endothelium. (I) The resulting red-labeled clone at 48 hr was solely two macrophages near a blood vessel. Another green-labeled macrophage is out of focus.

Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image.

Reprinted from Developmental Cell, 16(5), Warga, R.M., Kane, D.A., and Ho, R.K., Fate mapping embryonic blood in zebrafish: multi- and unipotential lineages are segregated at gastrulation, 744-755, Copyright (2009) with permission from Elsevier. Full text @ Dev. Cell