Gene
irs2b
- ID
- ZDB-GENE-081104-462
- Name
- insulin receptor substrate 2b
- Symbol
- irs2b Nomenclature History
- Previous Names
-
- irs2
- si:dkeyp-24d6.1 (1)
- Type
- protein_coding_gene
- Location
- Chr: 9 Mapping Details/Browsers
- Description
- Predicted to enable insulin receptor binding activity and phosphatidylinositol 3-kinase binding activity. Predicted to be involved in insulin receptor signaling pathway. Predicted to be active in cytosol and plasma membrane. Human ortholog(s) of this gene implicated in type 2 diabetes mellitus. Orthologous to human IRS2 (insulin receptor substrate 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Knuth et al., 2020
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
type 2 diabetes mellitus | Alliance | {Diabetes mellitus, noninsulin-dependent} | 125853 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Insulin receptor substrate | IRS-type PTB domain | PH-like domain superfamily | Pleckstrin homology domain |
---|---|---|---|---|---|---|
UniProtKB:A0A0R4IKQ9 | InterPro | 1062 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(hsp70l:LOXP-mCherry-STOP-LOXP-dnirs2b-EGFP,cryaa:Cerulean) |
| 1 | Ye et al., 2016 | ||
Tg(Tru.Tyrp1:dnirs2b-GFP,myl7:mCherry) |
| 1 | Zhang et al., 2018 |
1 - 2 of 2
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEYP-24D6 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-391C6 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_695654 (1) | 5184 nt | ||
Genomic | GenBank:BX465867 (1) | 170425 nt | ||
Polypeptide | UniProtKB:A0A0R4IKQ9 (1) | 1062 aa |
- Yu, W., Luo, R., He, C., Li, Z., Yang, M., Zhou, J., He, J., Chen, Q., Song, Z., Cheng, S. (2024) Bergenin mitigates neuroinflammatory damage induced by high glucose: insights from Zebrafish, murine microbial cell line, and rat models. Frontiers in pharmacology. 15:13391781339178
- Le Mentec, H., Monniez, E., Legrand, A., Monvoisin, C., Lagadic-Gossmann, D., Podechard, N. (2023) A New In Vivo Zebrafish Bioassay Evaluating Liver Steatosis Identifies DDE as a Steatogenic Endocrine Disruptor, Partly through SCD1 Regulation. International Journal of Molecular Sciences. 24(4):
- Medkova, D., Hollerova, A., Blahova, J., Marsalek, P., Mares, J., Hodkovicova, N., Doubkova, V., Hesova, R., Tichy, F., Faldyna, M., Taştan, Y., Kotoucek, J., Svobodova, Z., Lakdawala, P. (2023) Medicine designed to combat diseases of affluence affects the early development of fish. How do plastic microparticles contribute?. The Science of the total environment. 904:166378
- Zuppo, D.A., Missinato, M.A., Santana-Santos, L., Li, G., Benos, P.V., Tsang, M. (2023) Foxm1 regulates cardiomyocyte proliferation in adult zebrafish after cardiac injury. Development (Cambridge, England). 150(6):
- Yu, F., Luo, H.R., Cui, X.F., Wu, Y.J., Li, J.L., Feng, W.R., Tang, Y.K., Su, S.Y., Xiao, J., Hou, Z.S., Xu, P. (2022) Changes in aggression and locomotor behaviors in response to zinc is accompanied by brain cell heterogeneity and metabolic and circadian dysregulation of the brain-liver axis. Ecotoxicology and environmental safety. 248:114303
- Zasu, A., Hishima, F., Thauvin, M., Yoneyama, Y., Kitani, Y., Hakuno, F., Volovitch, M., Takahashi, S.I., Vriz, S., Rampon, C., Kamei, H. (2022) NADPH-Oxidase Derived Hydrogen Peroxide and Irs2b Facilitate Re-oxygenation-Induced Catch-Up Growth in Zebrafish Embryo. Frontiers in endocrinology. 13:929668
- Knuth, M.M., Mahapatra, D., Jima, D., Wan, D., Hammock, B.D., Law, M., Kullman, S.W. (2020) Vitamin D deficiency serves as a precursor to stunted growth and central adiposity in zebrafish. Scientific Reports. 10:16032
- Yang, F., Qiu, W., Li, R., Hu, J., Luo, S., Zhang, T., He, X., Zheng, C. (2018) Genome-wide identification of the interactions between key genes and pathways provide new insights into the toxicity of bisphenol F and S during early development in zebrafish. Chemosphere. 213:559-567
- Zhang, Y.M., Zimmer, M.A., Guardia, T., Callahan, S.J., Mondal, C., Di Martino, J., Takagi, T., Fennell, M., Garippa, R., Campbell, N.R., Bravo-Cordero, J.J., White, R.M. (2018) Distant Insulin Signaling Regulates Vertebrate Pigmentation through the Sheddase Bace2. Developmental Cell. 45(5):580-594.e7
- Zhao, F., Wang, H., Wei, P., Jiang, G., Wang, W., Zhang, X., Ru, S. (2018) Impairment of bisphenol F on the glucose metabolism of zebrafish larvae. Ecotoxicology and environmental safety. 165:386-392
1 - 10 of 13
Show