Gene
grin2ca
- ID
- ZDB-GENE-070822-3
- Name
- glutamate receptor, ionotropic, N-methyl D-aspartate 2Ca
- Symbol
- grin2ca Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 3 Mapping Details/Browsers
- Description
- Predicted to enable NMDA glutamate receptor activity and transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potential. Predicted to be involved in excitatory postsynaptic potential; glutamatergic synaptic transmission; and long-term synaptic potentiation. Predicted to act upstream of or within monoatomic ion transmembrane transport. Predicted to be located in postsynaptic membrane. Predicted to be part of NMDA selective glutamate receptor complex. Predicted to be active in postsynaptic density membrane. Orthologous to human GRIN2C (glutamate ionotropic receptor NMDA type subunit 2C).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la015099Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la023952Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa14471 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa19980 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa26037 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa31318 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa31319 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa31320 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa40035 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa40036 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 10 of 10
Show
No data available
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR001320 | Ionotropic glutamate receptor, C-terminal |
Domain | IPR001828 | Receptor, ligand binding region |
Domain | IPR018884 | Glutamate [NMDA] receptor, epsilon subunit, C-terminal |
Domain | IPR019594 | Ionotropic glutamate receptor, L-glutamate and glycine-binding domain |
Family | IPR001508 | Ionotropic glutamate receptor, metazoa |
1 - 5 of 7 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | Glutamate [NMDA] receptor, epsilon subunit, C-terminal | Ionotropic glutamate receptor | Ionotropic glutamate receptor, C-terminal | Ionotropic glutamate receptor, L-glutamate and glycine-binding domain | Ionotropic glutamate receptor, metazoa | Periplasmic binding protein-like I | Receptor, ligand binding region |
---|---|---|---|---|---|---|---|---|---|
UniProtKB:E7FH62 | InterPro | 1400 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
grin2ca-202
(1)
|
Ensembl | 4,287 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-9G11 | ZFIN Curated Data | |
Contained in | BAC | DKEYP-51F2 |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | GenBank:EB948970 (1) | 522 nt | ||
Genomic | GenBank:BX546473 | 211253 nt | ||
Polypeptide | UniProtKB:E7FH62 (1) | 1400 aa |
- Liu, C., Wang, Y., Deng, J., Lin, J., Hu, C., Li, Q., Xu, X. (2021) Social Deficits and Repetitive Behaviors Are Improved by Early Postnatal Low-Dose VPA Intervention in a Novel shank3-Deficient Zebrafish Model. Frontiers in neuroscience. 15:682054
- Qian, Y., Ji, C., Yue, S., Zhao, M. (2019) Exposure of low-dose fipronil enantioselectively induced anxiety-like behavior associated with DNA methylation changes in embryonic and larval zebrafish. Environmental pollution (Barking, Essex : 1987). 249:362-371
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Menezes, F.P., Kist, L.W., Bogo, M.R., Bonan, C.D., Da Silva, R.S. (2015) Evaluation of Age-Dependent Response to NMDA Receptor Antagonism in Zebrafish. Zebrafish. 12(2):137-43
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Sato, Y., Hashiguchi, Y., and Nishida, M. (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evolutionary Biology. 9:127
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Cox, J.A., Kucenas, S., and Voigt, M.M. (2005) Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 234(3):756-766
1 - 10 of 10
Show