Gene
abhd5a
- ID
- ZDB-GENE-070615-1
- Name
- abhydrolase domain containing 5, lysophosphatidic acid acyltransferase a
- Symbol
- abhd5a Nomenclature History
- Previous Names
-
- abhd5
- Type
- protein_coding_gene
- Location
- Chr: 16 Mapping Details/Browsers
- Description
- Predicted to enable carboxylic ester hydrolase activity and lysophosphatidic acid acyltransferase activity. Predicted to be involved in several processes, including negative regulation of triglyceride storage; phosphatidic acid biosynthetic process; and positive regulation of triglyceride catabolic process. Predicted to act upstream of or within cell differentiation; fatty acid metabolic process; and phospholipid biosynthetic process. Predicted to be located in cytoplasm and membrane. Predicted to be active in lipid droplet and mitochondrion. Is expressed in liver.
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from Han et al., 2021
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Chanarin-Dorfman syndrome | Alliance | Chanarin-Dorfman syndrome | 275630 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Alpha/Beta hydrolase fold | Alpha/beta hydrolase fold-1 |
---|---|---|---|---|
UniProtKB:A0A8M2B4Q8 | InterPro | 371 | ||
UniProtKB:A0A8M1RNV7 | InterPro | 344 |
1 - 2 of 2
- Genome Browsers
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
lincRNA |
abhd5a-001
(1)
|
Ensembl | 529 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
- Pang, M.Z., Li, H.X., Dai, X.Q., Wang, X.B., Liu, J.Y., Shen, Y., Xu, X., Zhong, Z.M., Wang, H., Liu, C.F., Wang, F. (2024) Melatonin Ameliorates Abnormal Sleep-Wake Behavior via Facilitating Lipid Metabolism in a Zebrafish Model of Parkinson's Disease. Neuroscience Bulletin. 40(12):1901-1914
- Han, S.L., Qian, Y.C., Limbu, S.M., Wang, J., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2021) Lipolysis and lipophagy play individual and interactive roles in regulating triacylglycerol and cholesterol homeostasis and mitochondrial form in zebrafish. Biochimica et biophysica acta. Molecular and cell biology of lipids. 1866(9):158988
- Han, S.L., Liu, Y., Limbu, S.M., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2020) The reduction of lipid-sourced energy production caused by ATGL inhibition cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients in fish. Fish physiology and biochemistry. 47(1):173-188
- McPartland, J.M., Glass, M., Matias, I., Norris, R.W., and Kilpatrick, C.W. (2007) A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio). Molecular genetics and genomics : MGG. 277(5):555-570
- Lo, J., Lee, S., Xu, M., Liu, F., Ruan, H., Eun, A., He, Y., Ma, W., Wang, W., Wen, Z., and Peng, J. (2003) 15,000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome research. 13(3):455-466
1 - 5 of 5
Show