Gene
fktn
- ID
- ZDB-GENE-070410-96
- Name
- fukutin
- Symbol
- fktn Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 5 Mapping Details/Browsers
- Description
- Acts upstream of or within muscle cell development; regulation of protein glycosylation; and vasculogenesis. Predicted to be active in Golgi membrane. Is expressed in several structures, including brain; cloacal chamber; fin bud; myotome; and shield. Human ortholog(s) of this gene implicated in dilated cardiomyopathy (multiple) and muscular dystrophy (multiple). Orthologous to human FKTN (fukutin).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 6 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7163166 (1 image)
Wild Type Expression Summary
Phenotype Summary
Mutations
No data available
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-fktn | Zhang et al., 2024 | |
MO1-fktn | N/A | (2) |
MO2-fktn | N/A | Wood et al., 2011 |
1 - 3 of 3
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
autosomal recessive limb-girdle muscular dystrophy type 2M | Alliance | Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 4 | 611588 |
dilated cardiomyopathy 1X | Alliance | Cardiomyopathy, dilated, 1X | 611615 |
Fukuyama congenital muscular dystrophy | Alliance | Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 | 253800 |
muscular dystrophy-dystroglycanopathy type B4 | Alliance | Muscular dystrophy-dystroglycanopathy (congenital without impaired intellectual development), type B, 4 | 613152 |
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | LicD/FKTN/FKRP, nucleotidyltransferase domain | Ribitol-5-phosphate transferase FKTN, N-terminal | Ribitol-5-phosphate transferase FKTN-related |
---|---|---|---|---|---|
UniProtKB:A3KP10 | InterPro | 457 | |||
UniProtKB:A0A8M9PWZ8 | InterPro | 418 |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-286A10 | ||
Contained in | BAC | DKEY-204E18 | ZFIN Curated Data | |
Encodes | EST | IMAGE:7163166 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:162828 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001042694 (1) | 1811 nt | ||
Genomic | GenBank:BX072578 (1) | 183498 nt | ||
Polypeptide | UniProtKB:A3KP10 (1) | 457 aa |
- Zhang, Y., Liu, Y., Qin, W., Zheng, S., Xiao, J., Xia, X., Yuan, X., Zeng, J., Shi, Y., Zhang, Y., Ma, H., Varshney, G.K., Fei, J.F., Liu, Y. (2024) Cytosine base editors with increased PAM and deaminase motif flexibility for gene editing in zebrafish. Nature communications. 15:95269526
- Serafini, P.R., Feyder, M.J., Hightower, R.M., Garcia-Perez, D., Vieira, N.M., Lek, A., Gibbs, D.E., Moukha-Chafiq, O., Augelli-Szafran, C.E., Kawahara, G., Widrick, J.J., Kunkel, L.M., Alexander, M.S. (2018) A limb-girdle muscular dystrophy 2I model of muscular dystrophy identifies corrective drug compounds for dystroglycanopathies. JCI insight. 3(18):
- Shih, Y.H., Zhang, Y., Ding, Y., Ross, C.A., Li, H., Olson, T.M., Xu, X. (2015) Cardiac Transcriptome and Dilated Cardiomyopathy Genes in Zebrafish. Circulation. Cardiovascular genetics. 8(2):261-9
- Roscioli, T., Kamsteeg, E.J., Buysse, K., Maystadt, I., van Reeuwijk, J., van den Elzen, C., van Beusekom, E., Riemersma, M., Pfundt, R., Vissers, L.E., Schraders, M., Altunoglu, U., Buckley, M.F., Brunner, H.G., Grisart, B., Zhou, H., Veltman, J.A., Gilissen, C., Mancini, G.M., Delrée, P., Willemsen, M.A., Ramadža, D.P., Chitayat, D., Bennett, C., Sheridan, E., Peeters, E.A., Tan-Sindhunata, G.M., de Die-Smulders, C.E., Devriendt, K., Kayserili, H., El-Hashash, O.A., Stemple, D.L., Lefeber, D.J., Lin, Y.Y., and van Bokhoven, H. (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nature Genetics. 44(5):581-585
- Lin, Y.Y., White, R.J., Torelli, S., Cirak, S., Muntoni, F., and Stemple, D.L. (2011) Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies. Human molecular genetics. 20(9):1763-75
- Wood, A.J., Müller, J.S., Jepson, C.D., Laval, S.H., Lochmüller, H., Bushby, K., Barresi, R., and Straub, V. (2011) Abnormal Vascular Development in Zebrafish Models for Fukutin and FKRP Deficiency. Human molecular genetics. 20(24):4879-90
- Moore, C.J., Goh, H.T., and Hewitt, J.E. (2008) Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics. 92(3):159-167
- Steffen, L.S., Guyon, J.R., Vogel, E.D., Beltre, R., Pusack, T.J., Zhou, Y., Zon, L.I., and Kunkel, L.M. (2007) Zebrafish orthologs of human muscular dystrophy genes. BMC Genomics. 8(1):79
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 9 of 9
Show