Gene
lrrc8ab
- ID
- ZDB-GENE-060531-43
- Name
- leucine rich repeat containing 8 VRAC subunit Ab
- Symbol
- lrrc8ab Nomenclature History
- Previous Names
-
- si:ch211-236k19.7
- Type
- protein_coding_gene
- Location
- Chr: 5 Mapping Details/Browsers
- Description
- Predicted to enable volume-sensitive anion channel activity. Predicted to be involved in aspartate transmembrane transport; cyclic-GMP-AMP transmembrane import across plasma membrane; and monoatomic anion transmembrane transport. Predicted to act upstream of or within monoatomic ion transmembrane transport. Predicted to be located in membrane. Predicted to be part of monoatomic ion channel complex. Predicted to be active in cytoplasm and plasma membrane. Is expressed in head; heart tube; otic vesicle; pectoral fin bud; and ventricular system. Human ortholog(s) of this gene implicated in agammaglobulinemia and agammaglobulinemia 5. Orthologous to human LRRC8A (leucine rich repeat containing 8 VRAC subunit A).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Tseng et al., 2020
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 4 figures from Tseng et al., 2020
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa16642 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-lrrc8ab | Tseng et al., 2020 | |
CRISPR2-lrrc8ab | Tseng et al., 2020 | |
CRISPR3-lrrc8ab | Tseng et al., 2020 | |
CRISPR4-lrrc8ab | Tseng et al., 2020 | |
MO1-lrrc8ab | N/A | Tseng et al., 2020 |
MO2-lrrc8ab | N/A | Tseng et al., 2020 |
1 - 6 of 6
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
agammaglobulinemia 5 | Alliance | ?Agammaglobulinemia 5 | 613506 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR021040 | LRRC8, pannexin-like TM region |
Family | IPR050216 | Leucine-rich repeat domain-containing protein |
Homologous_superfamily | IPR032675 | Leucine-rich repeat domain superfamily |
Repeat | IPR001611 | Leucine-rich repeat |
Repeat | IPR003591 | Leucine-rich repeat, typical subtype |
1 - 5 of 5
Domain Details Per Protein
Protein | Additional Resources | Length | Leucine-rich repeat | Leucine-rich repeat domain-containing protein | Leucine-rich repeat domain superfamily | Leucine-rich repeat, typical subtype | LRRC8, pannexin-like TM region |
---|---|---|---|---|---|---|---|
UniProtKB:A2BF98 | InterPro | 796 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
lrrc8ab-201
(1)
|
Ensembl | 7,828 nt | ||
mRNA |
lrrc8ab-202
(1)
|
Ensembl | 2,717 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-236K19 | ZFIN Curated Data |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_681083 (1) | 2995 nt | ||
Genomic | GenBank:BX255921 (1) | 142918 nt | ||
Polypeptide | UniProtKB:A2BF98 (1) | 796 aa |
- Tseng, Y.T., Ko, C.L., Chang, C.T., Lee, Y.H., Huang Fu, W.C., Liu, I.H. (2020) Leucine-rich repeat containing 8A contributes to the expansion of brain ventricles in zebrafish embryos. Biology Open. 9(1):
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
1 - 4 of 4
Show