Gene
eps15l1a
- ID
- ZDB-GENE-060503-274
- Name
- epidermal growth factor receptor pathway substrate 15-like 1a
- Symbol
- eps15l1a Nomenclature History
- Previous Names
-
- si:dkeyp-192m14.7
- Type
- protein_coding_gene
- Location
- Chr: 22 Mapping Details/Browsers
- Description
- Predicted to enable calcium ion binding activity. Predicted to be involved in endocytosis and endosomal transport. Predicted to be part of clathrin coat of coated pit. Predicted to be active in cytoplasm and plasma membrane. Orthologous to human EPS15L1 (epidermal growth factor receptor pathway substrate 15 like 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa820 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa14244 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa24121 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa43801 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 4 of 4
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | EF-Hand 1, calcium-binding site | EF-hand domain | EF-hand domain pair | EH domain | Spectrin/alpha-actinin | Ubiquitin interacting motif |
---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M9PFY2 | InterPro | 943 | ||||||
UniProtKB:A0A8M3AXR7 | InterPro | 923 | ||||||
UniProtKB:A0A8M9Q7B6 | InterPro | 943 | ||||||
UniProtKB:A0A8M3AUS3 | InterPro | 882 | ||||||
UniProtKB:A0A8M9PDF2 | InterPro | 933 |
1 - 5 of 16 Show all
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
eps15l1a-201
(1)
|
Ensembl | 2,806 nt | ||
mRNA |
eps15l1a-202
(1)
|
Ensembl | 5,292 nt | ||
mRNA |
eps15l1a-203
(1)
|
Ensembl | 2,803 nt | ||
mRNA |
eps15l1a-204
(1)
|
Ensembl | 2,758 nt | ||
mRNA |
eps15l1a-205
(1)
|
Ensembl | 2,827 nt |
1 - 5 of 5
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-192M14 | ZFIN Curated Data | |
Encodes | EST | wz10387 |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_021473451 (1) | 7561 nt | ||
Genomic | GenBank:BX908392 (1) | 179577 nt | ||
Polypeptide | UniProtKB:A0A8M9PFY2 (1) | 943 aa |
- Li, X., Yang, S., Zhang, X., Zhang, Y., Zhang, Y., Li, H. (2024) Bioinformatic Analysis of Roquin Family Reveals Their Potential Role in Immune System. International Journal of Molecular Sciences. 25(11):
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Shim, H., Kim, J.H., Kim, C.Y., Hwang, S., Kim, H., Yang, S., Lee, J.E., Lee, I. (2016) Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource. Nucleic acids research. 44:9611-9623
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Geisler, R., Rauch, G.J., Baier, H., van Bebber, F., Brobeta, L., Dekens, M.P., Finger, K., Fricke, C., Gates, M.A., Geiger, H., Geiger-Rudolph, S., Gilmour, D., Glaser, S., Gnugge, L., Habeck, H., Hingst, K., Holley, S., Keenan, J., Kirn, A., Knaut, H., Lashkari, D., Maderspacher, F., Martyn, U., Neuhauss, S., Neumann, C., Nicolson, T., Pelegri, F., Ray, R., Rick, J.M., Roehl, H., Roeser, T., Schauerte, H.E., Schier, A.F., Schönberger, U., Schönthaler, H.-B., Schulte-Merker, S., Seydler, C., Talbot, W.S., Weiler, C., Nüsslein-Volhard, C., and Haffter, P. (1999) A radiation hybrid map of the zebrafish genome. Nature Genetics. 23(1):86-89
1 - 6 of 6
Show