Gene
gja4
- ID
- ZDB-GENE-050616-6
- Name
- gap junction protein alpha 4
- Symbol
- gja4 Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 19 Mapping Details/Browsers
- Description
- Predicted to enable gap junction channel activity. Acts upstream of or within pigmentation. Predicted to be located in gap junction and plasma membrane. Predicted to be part of connexin complex. Is expressed in melanocyte; trunk vasculature; and xanthophore. Human ortholog(s) of this gene implicated in coronary artery disease and myocardial infarction. Orthologous to human GJA4 (gap junction protein alpha 4).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
dtxa9 | Allele with one point mutation | Unknown | Missense | ENU | |
dtxg1 | Allele with one point mutation | Unknown | Missense | ENU | |
ou2025 | Allele with one deletion | Unknown | Unknown | TALEN | |
t37ui | Allele with one delins | Exon 1 | Unknown | CRISPR | |
t32241 | Allele with one delins | Exon 6 | Premature Stop | CRISPR |
1 - 5 of 5
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Connexin | Connexin, conserved site | Connexin, N-terminal | Connexin, N-terminal domain superfamily | Gap junction protein, cysteine-rich domain |
---|---|---|---|---|---|---|---|
UniProtKB:Q1LWG0 | InterPro | 341 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
cx39.4-201
(1)
|
Ensembl | 1,028 nt |
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(aox5-RTTA-ubb:EGFP,TETRE:gja4-IRES-Hsa.HIST1H2BJ-RFP) |
| 1 | Usui et al., 2019 | ||
Tg(mitfa:gja4) |
|
| 1 | Usui et al., 2019 | |
Tg(mitfa:gja4_deltaSR) |
|
| 1 | Watanabe, 2023 | |
Tg(mitfa:gja4_R3A) |
|
| 1 | Watanabe, 2023 | |
Tg(mitfa:gja4_R3D) |
|
| 1 | Watanabe, 2023 | |
Tg(mitfa:gja4_R3K) |
|
| 1 | Watanabe, 2023 |
1 - 6 of 6
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-261O1 | Eastman et al., 2006 | |
Encodes | cDNA | MGC:194920 | ZFIN Curated Data | |
Encodes | cDNA | MGC:194928 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001044823 (1) | 1028 nt | ||
Genomic | GenBank:BX571837 (2) | 190521 nt | ||
Polypeptide | UniProtKB:Q1LWG0 (1) | 341 aa |
- Watanabe, M. (2023) Fish-specific N-terminal domain sequence in Connexin 39.4 plays an important role in zebrafish stripe formation by regulating the opening and closing of gap junctions and hemichannels. Biochimica et biophysica acta. General subjects. 1867(5):130342
- Lukowicz-Bedford, R.M., Farnsworth, D.R., Miller, A.C. (2022) Connexinplexity: The spatial and temporal expression of connexin genes during vertebrate organogenesis. G3 (Bethesda). 12(5):
- Mikalsen, S.O., Tausen, M., Í Kongsstovu, S. (2020) Phylogeny of teleost connexins reveals highly inconsistent intra- and interspecies use of nomenclature and misassemblies in recent teleost chromosome assemblies. BMC Genomics. 21:223
- Podobnik, M., Frohnhöfer, H.G., Dooley, C.M., Eskova, A., Nüsslein-Volhard, C., Irion, U. (2020) Evolution of the potassium channel gene Kcnj13 underlies colour pattern diversification in Danio fish. Nature communications. 11:6230
- Usui, Y., Aramaki, T., Kondo, S., Watanabe, M. (2019) The minimal gap-junction network among melanophores and xanthophores required for stripe-pattern formation in zebrafish. Development (Cambridge, England). 146(22):
- Frohnhöfer, H.G., Geiger-Rudolph, S., Pattky, M., Meixner, M., Huhn, C., Maischein, H.M., Geisler, R., Gehring, I., Maderspacher, F., Nüsslein-Volhard, C., Irion, U. (2016) Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish. Biology Open. 5(6):736-44
- Watanabe, M., Sawada, R., Aramaki, T., Skerrett, I.M., Kondo, S. (2016) The physiological characterization of Connexin41.8 and Connexin39.4, which are involved in the stripe pattern formation of zebrafish. The Journal of biological chemistry. 291(3):1053-63
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Eom, D.S., Bain, E.J., Patterson, L.B., Grout, M.E., Parichy, D.M. (2015) Long-distance communication by specialized cellular projections during pigment pattern development and evolution. eLIFE. 4
- Fadeev, A., Krauss, J., Frohnhöfer, H.G., Irion, U., Nüsslein-Volhard, C. (2015) Tight junction protein 1a regulates pigment cell organisation during zebrafish colour patterning. eLIFE. 4
1 - 10 of 16
Show