Gene
gtpbp3
- ID
- ZDB-GENE-050522-335
- Name
- GTP binding protein 3, mitochondrial
- Symbol
- gtpbp3 Nomenclature History
- Previous Names
-
- zgc:112394 (1)
- Type
- protein_coding_gene
- Location
- Chr: 11 Mapping Details/Browsers
- Description
- Predicted to enable GTP binding activity and GTPase activity. Acts upstream of or within embryonic organ development; mitochondrial RNA metabolic process; and tRNA stabilization. Located in mitochondrion. Is expressed in several structures, including eye; heart; integument; liver; and pleuroperitoneal region. Used to study hypertrophic cardiomyopathy and mitochondrial metabolism disease. Human ortholog(s) of this gene implicated in combined oxidative phosphorylation deficiency 23. Orthologous to human GTPBP3 (GTP binding protein 3, mitochondrial).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:112394 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- 10 figures from 2 publications
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la027294Tg | Transgenic insertion | Unknown | Unknown | DNA | |
zf2239 | Allele with one deletion | Exon 2 | Premature Stop | CRISPR |
1 - 2 of 2
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-gtpbp3 | Chen et al., 2019 | |
MO1-gtpbp3 | N/A | Chen et al., 2016 |
MO2-gtpbp3 | N/A | Chen et al., 2016 |
1 - 3 of 3
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
combined oxidative phosphorylation deficiency 23 | Alliance | Combined oxidative phosphorylation deficiency 23 | 616198 |
1 - 1 of 1
Human Disease | Fish | Conditions | Citations |
---|---|---|---|
mitochondrial metabolism disease | AB + MO2-gtpbp3 | standard conditions | Chen et al., 2016 |
hypertrophic cardiomyopathy | gtpbp3zf2239/zf2239 (AB) | standard conditions | Chen et al., 2019 |
1 - 2 of 2
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | GTP binding domain | GTP-binding protein TrmE/Aminomethyltransferase GcvT, domain 1 | GTP-binding protein TrmE, N-terminal | MnmE, helical domain | P-loop containing nucleoside triphosphate hydrolase | Small GTP-binding domain | TrmE-type guanine nucleotide-binding domain | tRNA modification GTPase MnmE | tRNA modification GTPase MnmE domain 2 |
---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q501Z5
|
500 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
gtpbp3-201
(1)
|
Ensembl | 1,664 nt | ||
mRNA |
gtpbp3-202
(1)
|
Ensembl | 818 nt | ||
mRNA |
gtpbp3-204
(1)
|
Ensembl | 1,557 nt | ||
mRNA |
gtpbp3-205
(1)
|
Ensembl | 1,889 nt | ||
mRNA |
gtpbp3-206
(1)
|
Ensembl | 1,344 nt |
1 - 5 of 6 Show all
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-67M7 | ZFIN Curated Data | |
Encodes | cDNA | MGC:112394 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001020769 (1) | 1681 nt | ||
Genomic | GenBank:BX279524 (1) | 157440 nt | ||
Polypeptide | UniProtKB:Q501Z5 (1) | 500 aa |
- Chen, D., Zhang, Z., Chen, C., Yao, S., Yang, Q., Li, F., He, X., Ai, C., Wang, M., Guan, M.X. (2019) Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic acids research. 47(10):5341-5355
- Chen, D., Li, F., Yang, Q., Tian, M., Zhang, Z., Zhang, Q., Chen, Y., Guan, M.X. (2016) The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish. The international journal of biochemistry & cell biology. 77(Pt A):1-9
- Shim, H., Kim, J.H., Kim, C.Y., Hwang, S., Kim, H., Yang, S., Lee, J.E., Lee, I. (2016) Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource. Nucleic acids research. 44:9611-9623
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 6 of 6
Show