Gene
agtr2
- ID
- ZDB-GENE-050306-56
- Name
- angiotensin II receptor, type 2
- Symbol
- agtr2 Nomenclature History
- Previous Names
-
- zgc:113016
- Type
- protein_coding_gene
- Location
- Chr: 5 Mapping Details/Browsers
- Description
- Predicted to enable angiotensin type II receptor activity. Predicted to be involved in G protein-coupled receptor signaling pathway and inflammatory response. Predicted to act upstream of or within signal transduction. Predicted to be located in membrane. Predicted to be active in plasma membrane. Is expressed in several structures, including cardiovascular system; gill; liver; pleuroperitoneal region; and posterior lateral plate mesoderm. Human ortholog(s) of this gene implicated in IgA glomerulonephritis; end stage renal disease; hypoglycemia; intellectual disability; and vesicoureteral reflux. Orthologous to human AGTR2 (angiotensin II receptor type 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 5 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:6895796 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la024871Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa40411 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 2 of 2
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Angiotensin II receptor family | C-C chemokine receptor type 1-9-like | GPCR, rhodopsin-like, 7TM | G protein-coupled receptor, rhodopsin-like |
---|---|---|---|---|---|---|
UniProtKB:Q5CZS2 | InterPro | 360 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-125I10 | ZFIN Curated Data | |
Encodes | EST | IMAGE:6895796 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:113016 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001013350 (1) | 1836 nt | ||
Genomic | GenBank:BX640521 (2) | 126380 nt | ||
Polypeptide | UniProtKB:Q5CZS2 (1) | 360 aa |
- Kim, G.J., Melgoza, A., Jiang, F., Guo, S. (2021) The effect of renin-angiotensin-aldosterone system inhibitors on organ-specific ace2 expression in zebrafish and its implications for COVID-19. Scientific Reports. 11:23670
- Postlethwait, J.H., Massaquoi, M.S., Farnsworth, D.R., Yan, Y.L., Guillemin, K., Miller, A.C. (2021) The SARS-CoV-2 receptor and other key components of the Renin-Angiotensin-Aldosterone System related to COVID-19 are expressed in enterocytes in larval zebrafish. Biology Open. 10(3):
- Quillien, A., Gilbert, G., Boulet, M., Ethuin, S., Waltzer, L., Vandel, L. (2021) Prmt5 promotes vascular morphogenesis independently of its methyltransferase activity. PLoS Genetics. 17:e1009641
- Postlethwait, J.H., Farnsworth, D.R., Miller, A.C. (2020) An intestinal cell type in zebrafish is the nexus for the SARS-CoV-2 receptor and the Renin-Angiotensin-Aldosterone System that contributes to COVID-19 comorbidities. ZFIN Direct Data Submission.
- Chestnut, B., Sumanas, S. (2019) Zebrafish etv2 knock-in line labels vascular endothelial and blood progenitor cells. Developmental Dynamics : an official publication of the American Association of Anatomists. 249(2):245-261
- Moore, C., Richens, J.L., Hough, Y., Ucanok, D., Malla, S., Sang, F., Chen, Y., Elworthy, S., Wilkinson, R.N., Gering, M. (2018) Gfi1aa and Gfi1b set the pace for primitive erythroblast differentiation from hemangioblasts in the zebrafish embryo. Blood advances. 2:2589-2606
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wong, M.K., and Takei, Y. (2013) Angiotensin AT2 receptor activates the cyclic-AMP signaling pathway in eel. Molecular and Cellular Endocrinology. 365(2):292-302
- Gomez, G., Lee, J.H., Veldman, M.B., Lu, J., Xiao, X., and Lin, S. (2012) Identification of Vascular and Hematopoietic Genes Downstream of etsrp by Deep Sequencing in Zebrafish. PLoS One. 7(3):e31658
1 - 10 of 14
Show