Gene
eda
- ID
- ZDB-GENE-050107-6
- Name
- ectodysplasin A
- Symbol
- eda Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 5 Mapping Details/Browsers
- Description
- Predicted to enable receptor ligand activity. Acts upstream of or within bone development and odontogenesis. Predicted to be located in extracellular region and membrane. Predicted to be active in extracellular space. Is expressed in dental mesenchyme; head; integument; and pharynx. Human ortholog(s) of this gene implicated in ectodermal dysplasia 1 and tooth agenesis. Orthologous to human EDA (ectodysplasin A).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 6 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
dt1261 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
la015662Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa31463 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa31464 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 4 of 4
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
ectodermal dysplasia 1 | Alliance | Ectodermal dysplasia 1, hypohidrotic, X-linked | 305100 |
tooth agenesis | Alliance | Tooth agenesis, selective, X-linked 1 | 313500 |
1 - 2 of 2
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | Tumor Necrosis Factor Ligand Superfamily | Tumour necrosis factor domain | Tumour necrosis factor-like domain superfamily |
---|---|---|---|---|
UniProtKB:B0YIF1
|
359 | |||
UniProtKB:A0A8M9PKL3
|
354 | |||
UniProtKB:A0A8M9QEC5
|
357 | |||
UniProtKB:A0A8M9Q921
|
356 |
1 - 4 of 4
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(Xla.Eef1a1:eda) |
|
| 1 | (3) |
1 - 1 of 1
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-78E11 | ZFIN Curated Data | |
Contained in | BAC | CH73-223D24 | ZFIN Curated Data | |
Contained in | BAC | DKEY-48F17 | ZFIN Curated Data | |
Contains | STS | z35723-a1228g06.q1c | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001115065 (1) | 1216 nt | ||
Genomic | GenBank:AL954373 (1) | 220092 nt | ||
Polypeptide | UniProtKB:B0YIF1 (1) | 359 aa |
- Benard, E.L., Küçükaylak, I., Hatzold, J., Berendes, K.U.W., Carney, T.J., Beleggia, F., Hammerschmidt, M. (2023) wnt10a is required for zebrafish median fin fold maintenance and adult unpaired fin metamorphosis. Developmental Dynamics : an official publication of the American Association of Anatomists. 253(6):566-592
- Brown, T.L., Horton, E.C., Craig, E.W., Goo, C.E.A., Black, E.C., Hewitt, M.N., Yee, N.G., Fan, E.T., Raible, D.W., Rasmussen, J.P. (2023) Dermal appendage-dependent patterning of zebrafish atoh1a+ Merkel cells. eLIFE. 12:
- He, S., Li, L., Lv, L.Y., Cai, W.J., Dou, Y.Q., Li, J., Tang, S.L., Chen, X., Zhang, Z., Xu, J., Zhang, Y.P., Yin, Z., Wuertz, S., Tao, Y.X., Kuhl, H., Liang, X.F. (2020) Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding. Communications biology. 3:361
- Lee, Y.R., Khan, K., Armfield-Uhas, K., Srikanth, S., Thompson, N.A., Pardo, M., Yu, L., Norris, J.W., Peng, Y., Gripp, K.W., Aleck, K.A., Li, C., Spence, E., Choi, T.I., Kwon, S.J., Park, H.M., Yu, D., Do Heo, W., Mooney, M.R., Baig, S.M., Wentzensen, I.M., Telegrafi, A., McWalter, K., Moreland, T., Roadhouse, C., Ramsey, K., Lyons, M.J., Skinner, C., Alexov, E., Katsanis, N., Stevenson, R.E., Choudhary, J.S., Adams, D.J., Kim, C.H., Davis, E.E., Schwartz, C.E. (2020) Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy. Nature communications. 11:3698
- Postlethwait, J.H., Navajas Acedo, J., Piotrowski, T. (2019) Evolutionary Origin and Nomenclature of Vertebrate Wnt11-Family Genes. Zebrafish. 16(5):469-476
- Aman, A.J., Fulbright, A.N., Parichy, D.M. (2018) Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLIFE. 7:
- Rasmussen, J.P., Vo, N.T., Sagasti, A. (2018) Fish Scales Dictate the Pattern of Adult Skin Innervation and Vascularization. Developmental Cell. 46(3):344-359.e4
- Yuan, Q., Zhao, M., Tandon, B., Maili, L., Liu, X., Zhang, A., Baugh, E.H., Tran, T., Silva, R.M., Hecht, J.T., Swindell, E.C., Wagner, D.S., Letra, A. (2017) Role of WNT10A in failure of tooth development in humans and zebrafish. Molecular genetics & genomic medicine. 5:730-741
- Sadier, A., Lambert, E., Chevret, P., Décimo, D., Sémon, M., Tohmé, M., Ruggiero, F., Ohlmann, T., Pantalacci, S., Laudet, V. (2015) Tinkering signaling pathways by gain and loss of protein isoforms: the case of the EDA pathway regulator EDARADD. BMC Evolutionary Biology. 15:129
- Aigler, S.R., Jandzik, D., Hatta, K., Uesugi, K., Stock, D.W. (2014) Selection and constraint underlie irreversibility of tooth loss in cypriniform fishes. Proceedings of the National Academy of Sciences of the United States of America. 111(21):7707-12
1 - 10 of 15
Show