Gene
kcnk10a
- ID
- ZDB-GENE-041210-291
- Name
- potassium channel, subfamily K, member 10a
- Symbol
- kcnk10a Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport. Predicted to act upstream of or within monoatomic ion transmembrane transport. Predicted to be located in membrane. Predicted to be active in plasma membrane. Is expressed in several structures, including brain; female organism; male organism; myoseptum; and notochord. Orthologous to human KCNK10 (potassium two pore domain channel subfamily K member 10).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 6 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Potassium channel domain | Two pore domain potassium channel | Two pore domain potassium channel, TREK |
---|---|---|---|---|---|
UniProtKB:A3QJX1 | InterPro | 569 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
kcnk10a-201
(1)
|
Ensembl | 3,268 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-63B1 | ZFIN Curated Data |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001318375 (1) | 3833 nt | ||
Genomic | GenBank:CR388175 (1) | 207204 nt | ||
Polypeptide | UniProtKB:A3QJX1 (1) | 569 aa |
- Park, S.J., Silic, M.R., Staab, P.L., Chen, J., Zackschewski, E.L., Zhang, G. (2024) Evolution of two-pore domain potassium channels and their gene expression in zebrafish embryos. Developmental Dynamics : an official publication of the American Association of Anatomists. 253(8):722-749
- Yi, C., Spitters, T.W., Al-Far, E.A.A., Wang, S., Xiong, T., Cai, S., Yan, X., Guan, K., Wagner, M., El-Armouche, A., Antos, C.L. (2021) A calcineurin-mediated scaling mechanism that controls a K+-leak channel to regulate morphogen and growth factor transcription. eLIFE. 10:
- Loganathan, K., Moriya, S., Parhar, I.S. (2019) Diurnal Rhythm of trek2a Expression is Associated with Diurnal Rhythm of gnrh3 Expression in Zebrafish. Zoological science. 36:167-171
- Loganathan, K., Moriya, S., Parhar, I.S. (2018) Trek2a regulates gnrh3 expression under control of melatonin receptor Mt1 and α2-adrenoceptor.. Biochemical and Biophysical Research Communications. 496(3):927-933
- Loganathan, K., Moriya, S., Parhar, I.S. (2018) High Melatonin Conditions by Constant Darkness and High Temperature Differently Affect Melatonin Receptor mt1 and TREK Channel trek2a in the Brain of Zebrafish. Zebrafish. 15(5):473-483
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Loganathan, K., Moriya, S., Sivalingam, M., Ng, K.W., Parhar, I.S. (2017) Sequence and Localization of kcnk10a in the Brain of Adult Zebrafish (Danio rerio). Journal of chemical neuroanatomy. 86:92-99
- Rabinowitz, J.S., Robitaille, A.M., Wang, Y., Ray, C.A., Thummel, R., Gu, H., Djukovic, D., Raftery, D., Berndt, J.D., Moon, R.T. (2017) Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 114(5):E717-E726
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
1 - 10 of 11
Show