Gene
myo5aa
- ID
- ZDB-GENE-041027-2
- Name
- myosin VAa
- Symbol
- myo5aa Nomenclature History
- Previous Names
-
- myo5a
- si:dkey-266j9.1
- Type
- protein_coding_gene
- Location
- Chr: 18 Mapping Details/Browsers
- Description
- Predicted to enable actin filament binding activity and microfilament motor activity. Predicted to be involved in actin filament organization and endocytosis. Predicted to be part of myosin complex. Predicted to be active in actin cytoskeleton; cytoplasm; and membrane. Is expressed in central nervous system; dorsolateral placode; intestine; neural tube; and neuron neural crest derived. Human ortholog(s) of this gene implicated in Griscelli syndrome type 1. Orthologous to human MYO5A (myosin VA).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 4 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la020430Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa23354 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa23355 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa36702 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 4 of 4
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Griscelli syndrome type 1 | Alliance | Griscelli syndrome, type 1 | 214450 |
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Binding_site | IPR000048 | IQ motif, EF-hand binding site |
Domain | IPR001609 | Myosin head, motor domain-like |
Domain | IPR002710 | Dilute domain |
Domain | IPR004009 | Myosin, N-terminal, SH3-like |
Domain | IPR036103 | Class V myosin, motor domain |
Domain | IPR037988 | Myosin 5a, cargo-binding domain |
Homologous_superfamily | IPR027417 | P-loop containing nucleoside triphosphate hydrolase |
Homologous_superfamily | IPR036961 | Kinesin motor domain superfamily |
Domain Details Per Protein
Protein | Additional Resources | Length | Class V myosin, motor domain | Dilute domain | IQ motif, EF-hand binding site | Kinesin motor domain superfamily | Myosin 5a, cargo-binding domain | Myosin head, motor domain-like | Myosin, N-terminal, SH3-like | P-loop containing nucleoside triphosphate hydrolase |
---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M3AJS5 | InterPro | 1846 | ||||||||
UniProtKB:A0A8M2BKY7 | InterPro | 1828 | ||||||||
UniProtKB:A0A8M9PPP8 | InterPro | 1850 | ||||||||
UniProtKB:A0A8M3B332 | InterPro | 1825 | ||||||||
UniProtKB:A0A8M9PW04 | InterPro | 1849 | ||||||||
UniProtKB:A0A8M2BKY1 | InterPro | 1827 | ||||||||
UniProtKB:A0A8M9P1G5 | InterPro | 1368 | ||||||||
UniProtKB:A0A8M9PAJ4 | InterPro | 1340 | ||||||||
UniProtKB:A0A8M9PPQ8 | InterPro | 1854 | ||||||||
UniProtKB:A0A8M3AV30 | InterPro | 1848 | ||||||||
UniProtKB:A0A8M3AS48 | InterPro | 1847 | ||||||||
UniProtKB:A0AB32TCA0 | InterPro | 1892 | ||||||||
UniProtKB:A0AB32TCA7 | InterPro | 1870 | ||||||||
UniProtKB:A0AB32TJP6 | InterPro | 1890 | ||||||||
UniProtKB:A0AB32TM90 | InterPro | 1824 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
myo5aa-201
(1)
|
Ensembl | 5,535 nt | ||
mRNA |
myo5aa-202
(1)
|
Ensembl | 5,535 nt | ||
mRNA |
myo5aa-203
(1)
|
Ensembl | 844 nt | ||
mRNA |
myo5aa-204
(1)
|
Ensembl | 5,735 nt | ||
mRNA |
myo5aa-206
(1)
|
Ensembl | 5,809 nt | ||
ncRNA |
myo5aa-005
(1)
|
Ensembl | 815 nt |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-143E19 | ZFIN Curated Data | |
Contained in | BAC | DKEY-266J9 | ZFIN Curated Data | |
Encodes | cDNA | MGC:195213 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001080959 (1) | 5535 nt | ||
Genomic | RefSeq:NW_018395043 (1) | 265039 nt | ||
Polypeptide | UniProtKB:A0AB32TCA0 (1) | 1892 aa |
- Jedrychowska, J., Gasanov, E.V., Korzh, V. (2020) Kcnb1 plays a role in development of the inner ear. Developmental Biology. 471:65-75
- Qian, L., Cui, F., Yang, Y., Liu, Y., Qi, S., Wang, C. (2018) Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. The Science of the total environment. 634:478-487
- Qian, L., Qi, S., Cao, F., Zhang, J., Li, C., Song, M., Wang, C. (2018) Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages. Chemosphere. 214:184-194
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Sullivan, C., Lage, C.R., Yoder, J.A., Postlethwait, J.H., Kim, C.H. (2017) Evolutionary divergence of the vertebrate TNFAIP8 gene family: Applying the spotted gar orthology bridge to understand ohnolog loss in teleosts. PLoS One. 12:e0179517
- Sidhaye, J., Pinto, C.S., Dharap, S., Jacob, T., Bhargava, S., Sonawane, M. (2016) The zebrafish goosepimples/myosin Vb mutant exhibits cellular attributes of human microvillus inclusion disease. Mechanisms of Development. 142:62-74
- Sonal, ., Sidhaye, J., Phatak, M., Banerjee, S., Mulay, A., Deshpande, O., Bhide, S., Jacob, T., Gehring, I., Nuesslein-Volhard, C., Sonawane, M. (2014) Myosin Vb Mediated Plasma Membrane Homeostasis Regulates Peridermal Cell Size and Maintains Tissue Homeostasis in the Zebrafish Epidermis. PLoS Genetics. 10:e1004614
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Braasch, I., Brunet, F., Volff, J.N., and Schartl, M. (2009) Pigmentation pathway evolution after whole-genome duplication in fish. Genome biology and evolution. 1:479-493
- Sittaramane, V., and Chandrasekhar, A. (2008) Expression of unconventional myosin genes during neuronal development in zebrafish. Gene expression patterns : GEP. 8(3):161-170
1 - 10 of 13
Show