Gene
gna14
- ID
- ZDB-GENE-040808-7
- Name
- guanine nucleotide binding protein (G protein), alpha 14
- Symbol
- gna14 Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 5 Mapping Details/Browsers
- Description
- Predicted to enable G protein-coupled receptor binding activity; G-protein beta/gamma-subunit complex binding activity; and GTPase activity. Predicted to be involved in action potential; adenylate cyclase-modulating G protein-coupled receptor signaling pathway; and phospholipase C-activating dopamine receptor signaling pathway. Predicted to act upstream of or within G protein-coupled receptor signaling pathway. Predicted to be part of heterotrimeric G-protein complex. Predicted to be active in cytoplasm. Is expressed in digestive system; gill; integument; and sensory system. Orthologous to human GNA14 (G protein subunit alpha 14).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 6 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Family | IPR000654 | G-protein alpha subunit, group Q |
Family | IPR001019 | Guanine nucleotide binding protein (G-protein), alpha subunit |
Homologous_superfamily | IPR011025 | G protein alpha subunit, helical insertion |
Homologous_superfamily | IPR027417 | P-loop containing nucleoside triphosphate hydrolase |
1 - 4 of 4
Domain Details Per Protein
Protein | Additional Resources | Length | G-protein alpha subunit, group Q | G protein alpha subunit, helical insertion | Guanine nucleotide binding protein (G-protein), alpha subunit | P-loop containing nucleoside triphosphate hydrolase |
---|---|---|---|---|---|---|
UniProtKB:Q6AZW4 | InterPro | 354 |
1 - 1 of 1
- Genome Browsers
Interactions and Pathways
No data available
Plasmids
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-270F14 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-420F13 | ZFIN Curated Data | |
Encodes | cDNA | MGC:100897 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001003753 (1) | 1955 nt | ||
Genomic | GenBank:CU468920 (1) | 93429 nt | ||
Polypeptide | UniProtKB:Q6AZW4 (1) | 354 aa |
- Eachus, H., Oberski, L., Paveley, J., Bacila, I., Ashton, J.P., Esposito, U., Seifuddin, F., Pirooznia, M., Elhaik, E., Placzek, M., Krone, N., Cunliffe, V.T. (2023) Glucocorticoid Receptor regulates protein chaperone, circadian clock and affective disorder genes in the zebrafish brain. Disease models & mechanisms. 16(9):
- Dong, X.R., Wan, S.M., Zhou, J.J., Nie, C.H., Chen, Y.L., Diao, J.H., Gao, Z.X. (2022) Functional Differentiation of BMP7 Genes in Zebrafish: bmp7a for Dorsal-Ventral Pattern and bmp7b for Melanin Synthesis and Eye Development. Frontiers in cell and developmental biology. 10:838721
- Postlethwait, J.H., Massaquoi, M.S., Farnsworth, D.R., Yan, Y.L., Guillemin, K., Miller, A.C. (2021) The SARS-CoV-2 receptor and other key components of the Renin-Angiotensin-Aldosterone System related to COVID-19 are expressed in enterocytes in larval zebrafish. Biology Open. 10(3):
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Ohmoto, M., Okada, S., Nakamura, S., Abe, K., and Matsumoto, I. (2011) Mutually exclusive expression of Gαia and Gα14 reveals diversification of taste receptor cells in zebrafish. The Journal of comparative neurology. 519(8):1616-1629
- Oka, Y., and Korsching, S.I. (2011) Shared and Unique G Alpha Proteins in the Zebrafish Versus Mammalian Senses of Taste and Smell. Chemical senses. 36(4):357-365
- Oka, Y., Saraiva, L.R., Kwan, Y.Y., and Korsching, S.I. (2009) The fifth class of Gα proteins. Proceedings of the National Academy of Sciences of the United States of America. 106(5):1484-1489
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 10 of 11
Show