Gene
atp5pf
- ID
- ZDB-GENE-040426-2534
- Name
- ATP synthase peripheral stalk subunit F6
- Symbol
- atp5pf Nomenclature History
- Previous Names
-
- atp5j
- wu:fa66e04
- zgc:77541
- Type
- protein_coding_gene
- Location
- Chr: 1 Mapping Details/Browsers
- Description
- Predicted to enable proton transmembrane transporter activity. Predicted to act upstream of or within proton motive force-driven ATP synthesis and proton transmembrane transport. Predicted to be located in mitochondrial inner membrane. Predicted to be part of proton-transporting ATP synthase complex. Orthologous to human ATP5PF (ATP synthase peripheral stalk subunit F6).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Marín-Juez et al., 2019
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | ATP synthase-coupling factor 6, mitochondrial | ATP synthase-coupling factor 6 superfamily, mitochondrial |
---|---|---|---|---|
UniProtKB:Q6NYF7 | InterPro | 112 | ||
UniProtKB:B8JM34 | InterPro | 109 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
atp5pf-201
(1)
|
Ensembl | 1,204 nt | ||
mRNA |
atp5pf-202
(1)
|
Ensembl | 1,102 nt | ||
mRNA |
atp5pf-203
(1)
|
Ensembl | 480 nt | ||
mRNA |
atp5pf-204
(1)
|
Ensembl | 487 nt |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-41E3 | ZFIN Curated Data | |
Encodes | EST | fa66e04 | ZFIN Curated Data | |
Encodes | cDNA | MGC:77541 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_213307 (1) | 1261 nt | ||
Genomic | GenBank:CU571081 (1) | 130071 nt | ||
Polypeptide | UniProtKB:Q6NYF7 (1) | 112 aa |
- Ganguly, A., Padhan, D.K., Sengupta, A., Chakraborty, P., Sen, M. (2023) CCN6 influences transcription and controls mitochondrial mass and muscle organization. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 37:e22815e22815
- Fukuda, R., Marín-Juez, R., El-Sammak, H., Beisaw, A., Ramadass, R., Kuenne, C., Guenther, S., Konzer, A., Bhagwat, A.M., Graumann, J., Stainier, D.Y. (2020) Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish. EMBO reports. 21(8):e49752
- Marín-Juez, R., El-Sammak, H., Helker, C.S.M., Kamezaki, A., Mullapuli, S.T., Bibli, S.I., Foglia, M.J., Fleming, I., Poss, K.D., Stainier, D.Y.R. (2019) Coronary Revascularization During Heart Regeneration Is Regulated by Epicardial and Endocardial Cues and Forms a Scaffold for Cardiomyocyte Repopulation. Developmental Cell. 51:503-515.e4
- Teixeira, C.M.M., Correa, C.N., Iwai, L.K., Ferro, E.S., Castro, L.M. (2019) Characterization of Intracellular Peptides from Zebrafish (Danio rerio) Brain. Zebrafish. 16(3):240-251
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Han, B., Li, W., Chen, Z., Xu, Q., Luo, J., Shi, Y., Li, X., Yan, X., Zhang, J. (2016) Variation of DNA Methylome of Zebrafish Cells under Cold Pressure. PLoS One. 11:e0160358
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Hiramitsu, M., Shimada, Y., Kuroyanagi, J., Inoue, T., Katagiri, T., Zang, L., Nishimura, Y., Nishimura, N., and Tanaka, T. (2014) Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Scientific Reports. 4:3708
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 9 of 9
Show