Gene
erbb3a
- ID
- ZDB-GENE-030916-3
- Name
- erb-b2 receptor tyrosine kinase 3a
- Symbol
- erbb3a Nomenclature History
- Previous Names
-
- erbb3
- im:7148890
- si:dz150i12.1
- Type
- protein_coding_gene
- Location
- Chr: 6 Mapping Details/Browsers
- Description
- Predicted to enable neuregulin binding activity and neuregulin receptor activity. Predicted to be involved in several processes, including epidermal growth factor receptor signaling pathway; positive regulation of MAPK cascade; and positive regulation of epithelial cell proliferation. Predicted to act upstream of or within cell surface receptor protein tyrosine kinase signaling pathway and protein phosphorylation. Predicted to be located in membrane. Predicted to be part of receptor complex. Predicted to be active in basal plasma membrane. Is expressed in epidermis; fin; glial cell; and heart. Human ortholog(s) of this gene implicated in lethal congenital contracture syndrome 2; lung adenocarcinoma; lung non-small cell carcinoma; and neuronal intestinal dysplasia type A. Orthologous to human ERBB3 (erb-b2 receptor tyrosine kinase 3).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 6 figures from 6 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7148890 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la025736Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa7024 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 2 of 2
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
lethal congenital contracture syndrome 2 | Alliance | ?Lethal congenital contractural syndrome 2 | 607598 |
neuronal intestinal dysplasia type A | Alliance | Visceral neuropathy, familial, 1, autosomal recessive | 243180 |
{?Erythroleukemia, familial, susceptibility to} | 133180 |
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Binding_site | IPR017441 | Protein kinase, ATP binding site |
Domain | IPR000494 | Receptor L-domain |
Domain | IPR000719 | Protein kinase domain |
Domain | IPR001245 | Serine-threonine/tyrosine-protein kinase, catalytic domain |
Domain | IPR006211 | Furin-like cysteine-rich domain |
Domain | IPR032778 | Growth factor receptor domain 4 |
Family | IPR016245 | Tyrosine protein kinase, EGF/ERB/XmrK receptor |
Family | IPR050122 | Receptor Tyrosine Kinase |
Homologous_superfamily | IPR009030 | Growth factor receptor cysteine-rich domain superfamily |
Homologous_superfamily | IPR011009 | Protein kinase-like domain superfamily |
Homologous_superfamily | IPR036941 | Receptor L-domain superfamily |
Homologous_superfamily | IPR044912 | Epidermal growth factor receptor, juxtamembrane domain |
Repeat | IPR006212 | Furin-like repeat |
Domain Details Per Protein
Protein | Additional Resources | Length | Epidermal growth factor receptor, juxtamembrane domain | Furin-like cysteine-rich domain | Furin-like repeat | Growth factor receptor cysteine-rich domain superfamily | Growth factor receptor domain 4 | Protein kinase, ATP binding site | Protein kinase domain | Protein kinase-like domain superfamily | Receptor L-domain | Receptor L-domain superfamily | Receptor Tyrosine Kinase | Serine-threonine/tyrosine-protein kinase, catalytic domain | Tyrosine protein kinase, EGF/ERB/XmrK receptor |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q8AW81 | InterPro | 1305 | |||||||||||||
UniProtKB:A0A8M2BCY9 | InterPro | 1432 | |||||||||||||
UniProtKB:A0A8M2BD22 | InterPro | 1438 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA | erbb3a-001 (1) | Havana | 3,918 nt | ||
mRNA |
erbb3a-201
(1)
|
Ensembl | 3,918 nt | ||
mRNA |
erbb3a-203
(1)
|
Ensembl | 6,282 nt | ||
mRNA |
erbb3a-204
(1)
|
Ensembl | 412 nt | ||
ncRNA |
erbb3a-002
(1)
|
Ensembl | 532 nt | ||
ncRNA |
erbb3a-005
(1)
|
Ensembl | 519 nt |
Interactions and Pathways
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-354J22 | ZFIN Curated Data | |
Contained in | BAC | CH211-241A17 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-215O18 | ZFIN Curated Data | |
Contained in | PAC | BUSM1-150I12 | ||
Encodes | EST | IMAGE:7148890 | Thisse et al., 2004 |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001005320 (1) | 3918 nt | ||
Genomic | GenBank:AL953886 (1) | 154152 nt | ||
Polypeptide | UniProtKB:A0A8M2BD22 (1) | 1438 aa |
- Kang, Q., Jia, J., Dean, E.D., Yuan, H., Dai, C., Li, Z., Jiang, F., Zhang, X.K., Powers, A.C., Chen, W., Li, M. (2024) ErbB3 is required for hyperaminoacidemia-induced pancreatic α cell hyperplasia. The Journal of biological chemistry. 300(8):107499
- Ka, J., Kim, J.D., Pak, B., Han, O., Choi, W., Kim, H., Jin, S.W. (2020) Bone Morphogenetic Protein Signaling Restricts Proximodistal Extension of the Ventral Fin Fold. Frontiers in cell and developmental biology. 8:603306
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Samsa, L.A., Ito, C.E., Brown, D.R., Qian, L., Liu, J. (2016) IgG-Containing Isoforms of Neuregulin-1 Are Dispensable for Cardiac Trabeculation in Zebrafish. PLoS One. 11:e0166734
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Westcot, S.E., Hatzold, J., Urban, M.D., Richetti, S.K., Skuster, K.J., Harm, R.M., Lopez Cervera, R., Umemoto, N., McNulty, M.S., Clark, K.J., Hammerschmidt, M., Ekker, S.C. (2015) Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS One. 10:e0130688
- Challa, A.K., and Chatti, K. (2013) Conservation and Early Expression of Zebrafish Tyrosine Kinases Support the Utility of Zebrafish as a Model for Tyrosine Kinase Biology. Zebrafish. 10(3):264-74
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Tse, A.C., and Ge, W. (2010) Spatial localization of EGF family ligands and receptors in the zebrafish ovarian follicle and their expression profiles during folliculogenesis. General and comparative endocrinology. 167(3):397-407
- Anelli, V., Santoriello, C., Distel, M., Köster, R.W., Ciccarelli, F.D., and Mione, M. (2009) Global repression of cancer gene expression in a zebrafish model of melanoma is linked to epigenetic regulation. Zebrafish. 6(4):417-424
1 - 10 of 17
Show