Gene
pkd2l1
- ID
- ZDB-GENE-030616-558
- Name
- polycystic kidney disease 2-like 1
- Symbol
- pkd2l1 Nomenclature History
- Previous Names
-
- si:packtrz.2
- si:xx-packtrz.2
- Type
- protein_coding_gene
- Location
- Chr: 13 Mapping Details/Browsers
- Description
- Predicted to enable calcium ion binding activity; monoatomic cation channel activity; and muscle alpha-actinin binding activity. Acts upstream of or within mechanosensory behavior and notochord development. Predicted to be located in cell projection; cytoplasmic vesicle; and plasma membrane. Predicted to be active in membrane. Is expressed in several structures, including ependymal cell; pharyngeal arch cartilage; sensory system; spinal cord; and spinal cord neural tube. Orthologous to human PKD2L1 (polycystin 2 like 1, transient receptor potential cation channel).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 26 figures from 10 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
icm02 | Allele with one deletion | Exon 2 | Frameshift, Premature Stop | TALEN | |
sa6303 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa22300 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa42207 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 4 of 4
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | EF-hand domain | EF-hand domain pair | Polycystic kidney disease type 2 protein | Polycystin | Polycystin cation channel, PKD1/PKD2 | Polycystin domain |
---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8N7UVH6 | InterPro | 805 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
pkd2l1-201
(1)
|
Ensembl | 2,718 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(pkd2l1:EGFP) |
|
| 1 | (2) | |
Tg(pkd2l1:GAL4) |
|
| 2 | (14) | |
Tg(pkd2l1:GCaMP5G) |
|
| 1 | (8) | |
Tg(pkd2l1:TagRFP) |
|
| 1 | (4) |
1 - 4 of 4
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-51A16 | ZFIN Curated Data | |
Contained in | BAC | RP71-PACKTRZ | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_690312 (1) | |||
Genomic | GenBank:BX530079 (1) | 166397 nt | ||
Polypeptide | UniProtKB:A0A8N7UVH6 (1) | 805 aa |
- Marie-Hardy, L., Slimani, L., Messa, G., El Bourakkadi, Z., Prigent, A., Sayetta, C., Koëth, F., Pascal-Moussellard, H., Wyart, C., Cantaut-Belarif, Y. (2023) Loss of CSF-contacting neuron sensory function is associated with a hyper-kyphosis of the spine reminiscent of Scheuermann's disease. Scientific Reports. 13:55295529
- Prendergast, A.E., Jim, K.K., Marnas, H., Desban, L., Quan, F.B., Djenoune, L., Laghi, V., Hocquemiller, A., Lunsford, E.T., Roussel, J., Keiser, L., Lejeune, F.X., Dhanasekar, M., Bardet, P.L., Levraud, J.P., van de Beek, D., Vandenbroucke-Grauls, C.M.J.E., Wyart, C. (2023) CSF-contacting neurons respond to Streptococcus pneumoniae and promote host survival during central nervous system infection. Current biology : CB. 33(5):940-956.e10
- Bearce, E.A., Irons, Z.H., O'Hara-Smith, J.R., Kuhns, C.J., Fisher, S.I., Crow, W.E., Grimes, D.T. (2022) Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology. eLIFE. 11:
- Mukaigasa, K., Sakuma, C., Yaginuma, H. (2021) The developmental hourglass model is applicable to the spinal cord based on single-cell transcriptomes and non-conserved cis-regulatory elements. Development, growth & differentiation. 63(7):372-391
- Cantaut-Belarif, Y., Orts Del'Immagine, A., Penru, M., Pézeron, G., Wyart, C., Bardet, P.L. (2020) Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development. eLIFE. 9:
- Jedrychowska, J., Gasanov, E.V., Korzh, V. (2020) Kcnb1 plays a role in development of the inner ear. Developmental Biology. 471:65-75
- Lu, H., Shagirova, A., Goggi, J.L., Yeo, H.L., Roy, S. (2020) Reissner fibre-induced urotensin signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the vertebrate spine. Biology Open. 9(5):
- Orts-Del'Immagine, A., Cantaut-Belarif, Y., Thouvenin, O., Roussel, J., Baskaran, A., Langui, D., Koëth, F., Bivas, P., Lejeune, F.X., Bardet, P.L., Wyart, C. (2020) Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo. Current biology : CB. 30(5):827-839.e4
- Wang, X., Wang, S., Meng, Z., Zhao, C. (2020) Adrb1 and Adrb2b are the major β-adrenergic receptors regulating body axis straightening in zebrafish. Journal of genetics and genomics = Yi chuan xue bao. 47(12):781-784
- Di Bella, D.J., Carcagno, A.L., Bartolomeu, M.L., Pardi, M.B., Löhr, H., Siegel, N., Hammerschmidt, M., Marín-Burgin, A., Lanuza, G.M. (2019) Ascl1 Balances Neuronal versus Ependymal Fate in the Spinal Cord Central Canal. Cell Reports. 28:2264-2274.e3
1 - 10 of 22
Show