Gene
comtd1
- ID
- ZDB-GENE-030131-1072
- Name
- catechol-O-methyltransferase domain containing 1
- Symbol
- comtd1 Nomenclature History
- Previous Names
-
- wu:fb58g04
- Type
- protein_coding_gene
- Location
- Chr: 13 Mapping Details/Browsers
- Description
- Predicted to enable S-adenosylmethionine-dependent methyltransferase activity. Predicted to act upstream of or within methylation. Is expressed in liver. Orthologous to human COMTD1 (catechol-O-methyltransferase domain containing 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la018424Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa1067 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa8488 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 3 of 3
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Cation-dependent O-methyltransferase | Class I-like SAM-dependent O-methyltransferase | S-adenosyl-L-methionine-dependent methyltransferase superfamily |
---|---|---|---|---|---|
UniProtKB:A0A8M1NUZ9 | InterPro | 238 | |||
UniProtKB:A0A8M9QJS0 | InterPro | 175 |
1 - 2 of 2
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
comtd1-201
(1)
|
Ensembl | 454 nt | ||
mRNA |
comtd1-202
(1)
|
Ensembl | 955 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001163808 (1) | 961 nt | ||
Genomic | GenBank:BX470214 (1) | 234545 nt | ||
Polypeptide | UniProtKB:A0A8M1NUZ9 (1) | 238 aa |
- Uszczynska-Ratajczak, B., Sugunan, S., Kwiatkowska, M., Migdal, M., Carbonell-Sala, S., Sokol, A., Winata, C.L., Chacinska, A. (2022) Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish. Life science alliance. 6(1):
- Silic, M.R., Black, M.M., Zhang, G. (2021) Phylogenetic and developmental analyses indicate complex functions of Calcium-Activated Potassium Channels in zebrafish embryonic development. Developmental Dynamics : an official publication of the American Association of Anatomists. 250(10):1477-1493
- Chestnut, B., Sumanas, S. (2019) Zebrafish etv2 knock-in line labels vascular endothelial and blood progenitor cells. Developmental Dynamics : an official publication of the American Association of Anatomists. 249(2):245-261
- Meireles, A.M., Shen, K., Zoupi, L., Iyer, H., Bouchard, E.L., Williams, A., Talbot, W.S. (2018) The Lysosomal Transcription Factor TFEB Represses Myelination Downstream of the Rag-Ragulator Complex. Developmental Cell. 47:319-330.e5
- Takada, N., Omae, M., Sagawa, F., Chi, N.C., Endo, S., Kozawa, S., Sato, T.N. (2017) Re-evaluating functional landscape of the cardiovascular system during development. Biology Open. 6(11):1756-1770
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Mohseny, A.B., Xiao, W., Carvalho, R., Spaink, H.P., Hogendoorn, P.C., and Cleton-Jansen, AM. (2012) An osteosarcoma zebrafish model implicates Mmp-19 and Ets-1 as well as reduced host immune response in angiogenesis and migration. The Journal of pathology. 227(2):245-253
- Li, Z.H., Alex, D., Siu, S.O., Chu, I.K., Renn, J., Winkler, C., Lou, S., Tsui, S.K., Zhao, H.Y., Yan, W.R., Mahady, G.B., Li, G.H., Kwan, Y.W., Wang, Y.T., and Lee, S.M. (2011) Combined in vivo imaging and omics approaches reveal metabolism of icaritin and its glycosides in zebrafish larvae. Molecular Biosystems. 7(7):2128-38
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 10 of 10
Show