Community Action Needed: Please respond to the NIH RFI
Gaulke et al., 2019 - A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome's link to Pseudocapillaria tomentosa infection and pathology. Microbiome   7:10 Full text @ Microbiome

Fig. 1

Sampling strategy and physiological manifestations of P. tomentosa exposure. a Exposure and sampling strategy. b The number of worms observed in the intestine of individual fish (wet mount) at each sampling time point. c Weights of unexposed (blue boxes) and exposed fish (red boxes) at each sampling time point

Fig. 2

Longitudinal histopathological changes during P. tomentosa infection. a Inflammation, b hyperplasia, and c total histopathology score in animals exposed to P. tomentosa across the length of experiment

Fig. 3

Pathologic changes in fish infected with Pseudocapillaria tomentosa. Hematoxylin and eosin stained sections of parasite exposed and unexposed intestines (a-f). a A representative unexposed, control fish with minimal cellularity in the lamina propria and numerous goblet cells (arrows). b Intestine of a P. tomentosa-exposed fish at 7 dpe exhibiting mild hyperplasia (score 1) and containing numerous larval worms (arrows). c An exposed fish at 59 dpe exhibiting severe hyperplasia (score 3)with increased basilar nuclei (E) extending to near the brush border in some locations, numerous rodlet cells (arrows), and expanded lamina propria (L) due to chronic inflammation. d Chronic inflammation, inflammation score 3, with extensive expansion of the lamina propria (L), largely dysplastic epithelium (E), and loss of epithelial cell polarity (hyperplasia score 3) in a exposed fish at 59 dpe. e Extensive flattening of epithelial folds (E) and moderate expansion of lamina propria (L) due to chronic inflammation (hyperplasia 3, inflammation 2) at 86 dpe. f A carcinoma in an exposed fish at 86 dpe with neoplastic epithelial cells proliferating in the lamina propria (L), invading through tunica muscularis (M), and nests of neoplastic cells (S) present in the serosa. Scale bars=50 μm

Fig. 4

Pseudocapillaria tomentosa exposure is associated with altered microbiome composition. a Shannon entropy in exposed (red boxes) and unexposed animals. Nonmetric multidimensional scaling plots of exposed and unexposed microbiomes colored by b days post exposure, c total histopathology score (gray points = N/A), and e total parasite burden (gray points = N/A). Correlations between d total histopathology score and MDS1 and f total parasite burden and MDS1. Blue lines indicate the loess best-fit line and the shaded gray area represents the standard error

Fig. 5

Parasite burden is associated with microbial abundance. A heat map of coefficients from negative binomial generalized linear models with lowest AIC. The color of each cell represents the direction of the slope (red is negative, blue is positive). An asterisk in a cell indicates q < 0.15

Fig. 6

Microbial abundance is associated with parasite burden and histopathology. A heat map of coefficients from converged zero-inflated negative binomial generalized linear mixed effects models with lowest AIC. The color of each cell represents the direction of the slope (red is negative, blue is positive). Gray colored cells indicate that a model without an interaction parameter was selected as it had the lowest AIC. An asterisk in a cell indicates q < 0.15

Acknowledgments:
ZFIN wishes to thank the journal Microbiome for permission to reproduce figures from this article. Please note that this material may be protected by copyright. Full text @ Microbiome