ZFIN ID: ZDB-PUB-181130-22
Albumin uptake and distribution in the zebrafish liver as observed via correlative imaging
Cheng, D., Morsch, M., Shami, G.J., Chung, R.S., Braet, F.
Date: 2018
Source: Experimental cell research   374(1): 162-171 (Journal)
Registered Authors: Chung, Roger, Morsch, Marco
Keywords: Cell Uptake, Combined Imaging, Hepatic Vasculature, Morphometry, Multimodal Microscopy, Ultrastructure
MeSH Terms:
  • Albumins/metabolism*
  • Animals
  • Fluorescence
  • Larva/metabolism
  • Liver/metabolism*
  • Liver/ultrastructure
  • Models, Biological
  • Molecular Imaging*
  • Protein Transport
  • Zebrafish/metabolism*
PubMed: 30496757 Full text @ Exp. Cell Res.
Although liver transport routes have been extensively studied in rodents, live imaging under in situ and in vivo conditions of large volumes is still proven to be difficult. In this study, we took advantage of the optical transparency of zebrafish and their small size to explore their usefulness for correlative imaging studies and liver transport experimentations. First, we assessed the micro-architecture of the zebrafish liver and compared its fine structure to the rodent and humans' literature. Next, we investigated the transport routes and cellular distribution of albumin using combined and correlative microscopy approaches. These methods permitted us to track the injected proteins at different time points through the process of liver uptake and clearance of albumin. We demonstrate strong structural and functional resemblance between the zebrafish liver and its rodents and humans' counterparts. In as short as 5minutes post-injection, albumin rapidly accumulated within the LSECs. Furthermore, albumin entered the space of Disse where it initially accumulated then subsequently was taken up by the hepatocytes. We propose the zebrafish as a viable alternative experimental model for hepatic transport studies, allowing swift multimodal imaging and direct quantification on the hepatic distribution of supramolecular complexes of interest.