PUBLICATION

Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO)

Authors
Barber, D.M., Schönberger, M., Burgstaller, J., Levitz, J., Weaver, C.D., Isacoff, E.Y., Baier, H., Trauner, D.
ID
ZDB-PUB-170117-6
Date
2016
Source
Chemical science   7: 2347-2352 (Journal)
Registered Authors
Baier, Herwig, Burgstaller, Jessica, Isacoff, Ehud
Keywords
none
MeSH Terms
none
PubMed
28090283 Full text @ Chem Sci
Abstract
G-protein coupled inwardly rectifying potassium channels (GIRKs) are ubiquitously expressed throughout the human body and are an integral part of inhibitory signal transduction pathways. Upon binding of Gβγ subunits released from G-protein coupled receptors (GPCRs), GIRK channels open and reduce the activity of excitable cells via hyperpolarization. As such, they play a role in cardiac output, the coordination of movement and cognition. Due to their involvement in a multitude of pathways, the precision control of GIRK channels is an important endeavour. Here, we describe the development of the photoswitchable agonist LOGO (the Light Operated GIRK-channel Opener), which activates GIRK channels in the dark and is rapidly deactivated upon exposure to long wavelength UV irradiation. LOGO is the first K+ channel opener and selectively targets channels that contain the GIRK1 subunit. It can be used to optically silence action potential firing in dissociated hippocampal neurons and LOGO exhibits activity in vivo, controlling the motility of zebrafish larvae in a light dependent fashion. We envisage that LOGO will be a valuable research tool to dissect the function of GIRK channels from other GPCR dependent signalling pathways.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping