Zebrafish Models of Collagen VI Related Myopathies

Telfer, W.R., Busta, A.S., Bonnemann, C.G., Feldman, E.L., and Dowling, J.J.
Human molecular genetics   19(12): 2433-2444 (Journal)
Registered Authors
Dowling, Jim
MeSH Terms
  • Animals
  • Apoptosis
  • Collagen Type VI/genetics*
  • Collagen Type VI/metabolism
  • Cyclosporine/pharmacology
  • Disease Models, Animal*
  • Embryo, Nonmammalian/metabolism
  • Embryo, Nonmammalian/pathology
  • Exons/genetics
  • Gene Knockdown Techniques
  • Humans
  • Mice
  • Mitochondria, Muscle/drug effects
  • Mitochondria, Muscle/pathology
  • Motor Activity/drug effects
  • Muscle, Skeletal/abnormalities
  • Muscle, Skeletal/metabolism*
  • Muscle, Skeletal/ultrastructure
  • Muscular Dystrophies/genetics*
  • Muscular Dystrophies/metabolism
  • Muscular Dystrophies/pathology
  • Sarcolemma/drug effects
  • Sarcolemma/metabolism
  • Sarcolemma/pathology
  • Zebrafish/embryology
  • Zebrafish/genetics*
20338942 Full text @ Hum. Mol. Genet.
Collagen VI is an integral part of the skeletal muscle extracellular matrix, providing mechanical stability and facilitating matrix-dependent cell signaling. Mutations in collagen VI result in either Ullrich congenital muscular dystrophy (UCMD) or Bethlem myopathy (BM), with UCMD being the clinically more severe. Recent studies demonstrating increased apoptosis and abnormal mitochondrial function in Col6a1 knockout mice and in human myoblasts have provided the first mechanistic insights into the pathophysiology of these diseases. However, how loss of collagen VI causes mitochondrial dysfunction remains to be understood. Progress is hindered in part by the lack of an adequate animal model for UCMD, as knockout mice have a mild motor phenotype. To further the understanding of these disorders, we generated zebrafish models of the collagen VI myopathies. Morpholinos designed to exon 9 of col6a1 produced a severe muscle disease reminiscent of UCMD, while ones to exon 13 produced a milder phenotype similar to Bethlem myopathy. UCMD-like zebrafish have increased cell death and abnormal mitochondria, which can be attenuated by treatment with the proton pump modifier cyclosporin A (CsA). CsA improved the motor deficits in UCMD-like zebrafish, but failed to reverse the sarcolemmal membrane damage. In all, we have successfully generated the first vertebrate model matching the clinical severity of UCMD and demonstrated that CsA provides phenotypic improvement, thus corroborating data from knockout mice supporting the use of mitochondrial permeability transition pore modifiers as therapeutics in patients, and providing proof of principle for the utility of the zebrafish as a powerful pre-clinical model.
Genes / Markers
Show all Figures
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Engineered Foreign Genes