PUBLICATION

Visible Light Excitable Zn(2+) Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in Vivo Application

Authors
Qian, F., Zhang, C., Zhang, Y., He, W., Gao, X., Hu, P., and Guo, Z.
ID
ZDB-PUB-090116-19
Date
2009
Source
Journal of the American Chemical Society   131(4): 1460-1468 (Journal)
Registered Authors
Hu, Ping
Keywords
none
MeSH Terms
  • Animals
  • Cations, Divalent/chemistry
  • Cell Line, Tumor
  • Fluorescent Dyes/chemical synthesis
  • Fluorescent Dyes/chemistry*
  • Humans
  • Larva
  • Light*
  • Magnetic Resonance Spectroscopy
  • Molecular Structure
  • Rats
  • Spectrometry, Fluorescence
  • Zebrafish
  • Zinc/chemistry*
PubMed
19138071 Full text @ J. Am. Chem. Soc.
Abstract
The UV- and sensor-induced interferences to living systems pose a barrier for in vivo Zn(2+) imaging. In this work, an intramolecular charge transfer (ICT) fluorophore of smaller aromatic plane, 4-amino-7-nitro-2,1,3-benzoxadiazole, was adopted to construct visible light excited fluorescent Zn(2+) sensor, NBD-TPEA. This sensor demonstrates a visible ICT absorption band, a large Stokes shift, and biocompatibility. It emits weakly (Phi = 0.003) without pH dependence at pH 7.1-10.1, and the lambda(ex) and lambda(em) are 469 (epsilon(469) = 2.1 x 10(4) M(-1) cm(-1)) and 550 nm, respectively. The NBD-TPEA displays distinct selective Zn(2+)-amplified fluorescence (Phi = 0.046, epsilon(469) = 1.4 x 10(4) M(-1) cm(-1)) with emission shift from 550 to 534 nm, which can be ascribed to the synergic Zn(2+) coordination by the outer bis(pyridin-2-ylmethyl)amine (BPA) and 4-amine. The Zn(2+) binding ratio of NBD-TPEA is 1:1. By comparison with its analogues NBD-BPA and NBD-PMA, which have no Zn(2+) affinity, the outer BPA in NBD-TPEA should be responsible for the Zn(2+)-induced photoinduced electron transfer blockage as well as for the enhanced Zn(2+) binding ability of 4-amine. Successful intracellular Zn(2+) imaging on living cells with NBD-TPEA staining exhibited a preferential accumulation at lysosome and Golgi with dual excitability at either 458 or 488 nm. The intact in vivo Zn(2+) fluorescence imaging on zebrafish embryo or larva stained with NBD-TPEA revealed two zygomorphic luminescent areas around its ventricle which could be related to the Zn(2+) storage for the zebrafish development. Moreover, high Zn(2+) concentration in the developing neuromasters of zebrafish can be visualized by confocal fluorescence imaging. This study demonstrates a novel strategy to construct visible light excited Zn(2+) fluorescent sensor based on ICT fluorophore other than xanthenone analogues. Current data show that NBD-TPEA staining can be a reliable approach for the intact in vivo Zn(2+) imaging of zebrafish larva as well as for the clarification of subcellular distribution of Zn(2+) in vitro.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping