PUBLICATION

Functional genomic dissection of multimeric protein families in zebrafish

Authors
Cheng, K.C., Levenson, R., and Robishaw, J.D.
ID
ZDB-PUB-031031-11
Date
2003
Source
Developmental Dynamics : an official publication of the American Association of Anatomists   228(3): 555-567 (Journal)
Registered Authors
Cheng, Keith C., Levenson, Robert
Keywords
functional genomics, zebrafish, multimeric proteins, Na, K-ATPase, heterotrimeric G proteins, morpholino
MeSH Terms
  • Animals
  • Genomics*
  • Heterotrimeric GTP-Binding Proteins/genetics
  • Mice
  • Mice, Transgenic
  • Models, Genetic
  • Protein Subunits/genetics
  • Signal Transduction
  • Sodium-Potassium-Exchanging ATPase/genetics
  • Zebrafish/genetics*
  • Zebrafish Proteins/classification
  • Zebrafish Proteins/genetics*
PubMed
14579392 Full text @ Dev. Dyn.
Abstract
The study of multimeric protein function in the postgenomicera has become complicated by the discovery of multiple isoforms for each subunit of those proteins. A correspondingly large number of potential isoform combinations offer the multicellular organism a constellation of protein assemblies from which to generate a variety of functions across different cells, tissues, and organs. At the same time, the multiplicity of potential subunit isoform combinations presents a significant challenge when attempting to dissect the functions of particular isoform combinations. Biochemical and cell culture methods have brought us to a significant state of understanding of multimeric proteins but are unable to answer questions of function within the context of the many tissues and developmental stages of the multicellular organism. Answering those questions can be greatly facilitated in model systems in which expression can be determined over time, in the context of the whole organism, and in which hypomorphic function of each subunit can be studied individually and in combination. Fortunately, the potential for high-throughput in situ hybridization studies and antisense-based reverse genetic knockdowns in zebrafish offers exciting opportunities to meet this challenge. Some of these opportunities, along with cautions of interpretation and gaps in the existing technologies, are discussed in the context of ongoing investigations of the dimeric Na,K-ATPases and heterotrimeric G proteins.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping