ZFIN ID: ZDB-PERS-011022-1
Crawford, Bryan D.
Email: bryanc@unb.ca
URL: http://unb.ca/fredericton/science/depts/biology/people/crawford.html
Affiliation: Matrix Dynamic Lab
Address: Matrix Dynamics Lab Department of Biology University of New Brunswick Fredericton, NB, E3B 6E1 Canada
Country: Canada
Phone:
Fax: (506) 453-3583
ORCID ID: 0000-0002-0512-4649


BIOGRAPHY AND RESEARCH INTERESTS
My primary research foci are on cell-ECM interactions, their regulation, and how these give rise to macroscopic structure during embryonic development. In particular, I am investigating the roles of the matrix metalloproteinases and their regulators in the context of zebrafish embryogenesis.


PUBLICATIONS
Small, C.D., Davis, J.P., Crawford, B.D., Benfey, T.J. (2021) Early, nonlethal ploidy and genome size quantification using confocal microscopy in zebrafish embryos. Journal of experimental zoology. Part B, Molecular and developmental evolution. 336(6):496-510
Wyatt, R.A., Crawford, B.D. (2021) Post-translational activation of Mmp2 correlates with patterns of active collagen degradation during the development of the zebrafish tail. Developmental Biology. 477:155-163
Small, C.D., El-Khoury, M., Deslongchamps, G., Benfey, T.J., Crawford, B.D. (2020) Matrix Metalloproteinase 13 Activity is Required for Normal and Hypoxia-Induced Precocious Hatching in Zebrafish Embryos. Journal of developmental biology. 8(1):
Matchett, E.F., Wang, S., Crawford, B.D. (2019) Paralogues of Mmp11 and Timp4 Interact during the Development of the Myotendinous Junction in the Zebrafish Embryo. Journal of developmental biology. 7(4):
Fallata, A.M., Wyatt, R.A., Levesque, J.M., Dufour, A., Overall, C.M., Crawford, B.D. (2019) Intracellular Localization in Zebrafish Muscle and Conserved Sequence Features Suggest Roles for Gelatinase A Moonlighting in Sarcomere Maintenance. Biomedicines. 7(4):
Jeffrey, E.J., Crawford, B.D. (2018) The epitope-mediated MMP activation assay: detection and quantification of the activation of Mmp2 in vivo in the zebrafish embryo. Histochemistry and cell biology. 149(3):277-286
Wyatt, R.A., Trieu, N.P.V., Crawford, B.D. (2017) Zebrafish Xenograft: An Evolutionary Experiment in Tumour Biology. Genes. 8(9):220
Ellis, T.R., Crawford, B.D. (2016) Experimental Dissection of Metalloproteinase Inhibition-Mediated and Toxic Effects of Phenanthroline on Zebrafish Development. International Journal of Molecular Sciences. 17(9)
Jenkins, M.H., Alrowaished, S.S., Goody, M.F., Crawford, B.D., Henry, C.A. (2016) Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction. Skeletal muscle. 6:18
Crawford, B.D., Po, M.D., Saranyan, P.V., Forsberg, D., Schulz, R., Pilgrim, D.B. (2014) Mmp25β facilitates elongation of sensory neurons during zebrafish development. Genesis (New York, N.Y. : 2000). 52(10):833-48
Goody, M.F., Kelly, M.W., Reynolds, C.J., Khalil, A., Crawford, B.D., and Henry, C.A. (2012) NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biology. 10(10):e1001409
Keow, J.Y., Pond, E.D., Cisar, J.S., Cravatt, B.F., and Crawford, B.D. (2012) Activity-based labeling of matrix metalloproteinases in living vertebrate embryos. PLoS One. 7(8):e43434
Keow, J.Y., Herrmann, K.M., Crawford, B.D. (2011) Differential in vivo zymography: A method for observing matrix metalloproteinase activity in the zebrafish embryo. Matrix biology : journal of the International Society for Matrix Biology. 30(3):169-177
Wyatt, R.A., Keow, J.Y., Harris, N.D., Haché, C.A., Li, D.H., and Crawford, B.D. (2009) The Zebrafish Embryo: A Powerful Model System for Investigating Matrix Remodeling. Zebrafish. 6(4):347-354
Wohlgemuth, S.L., Crawford, B.D., and Pilgrim, D.B. (2007) The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Developmental Biology. 303(2):483-492
Crawford, B.D., and Pilgrim, D.B. (2005) Ontogeny and regulation of matrix metalloproteinase activity in the zebrafish embryo by in vitro and in vivo zymography. Developmental Biology. 286(2):405-414
Manning, A.G., Crawford, B.D., Waskiewicz, A.J., and Pilgrim, D.B. (2004) UNC-119 homolog required for normal development of the zebrafish nervous system. Genesis (New York, N.Y. : 2000). 40(4):223-230
Cooper, M.S., Sommers-Herivel, G., Poage, C.T., McCarthy, M.B., Crawford, B.D., and Phillips, C. (2004) The Zebrafish DVD Exchange Project: a bioinformatics initiative. The Zebrafish: Genetics, Genomics and Informatics, 2nd ed., Methods Cell Biol.. 77:439-457
Crawford, B.D., Henry, C.A., Clason, T.A., Becker, A.L., and Hille, M.B. (2003) Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis. Molecular biology of the cell. 14(8):3065-3081
Henry, C.A., Crawford, B.D., Yan, Y.-L., Postlethwait, J., Cooper, M.S., and Hille, M.B. (2001) Roles for zebrafish focal adhesion kinase in notochord and somite morphogenesis. Developmental Biology. 240(2):474-487
Henry, C.A., Crawford, B.D., Sepich, D., Cooper, M.S., and Hille, M. (2000) Subcellular localization of focal adhesion kinase during zebrafish organogenesis: Distinct roles for FAK in notochord and somite morphogenesis. Molecular biology of the cell. 11:297

NON-ZEBRAFISH PUBLICATIONS
Colpitts, C., Ektesabi, A.M., Wyatt, R.A., Crawford, B.D. and Kiani, A. (2017) “Mammalian fibroblast cells avoid residual stress zone caused by nanosecond laser pulses.” Journal of the Mechanical Behavior of Biomedical Materials. doi:10.1016/j.jmbbm.2017.06.005

Radmanesh, M., Ektesabi, A.M., Wyatt, R.A., Crawford, B.D. and Kiani A. “Mouse Embryonic Fibroblasts Accumulate Differentially on Titanium Surfaces Treated with Nanosecond Laser Pulses.” BiointerPhases, 11(3) doi:10.1116/1.4962066

Colpitts, C., Ektesabi, A.M., Wyatt, R.A., Crawford, B.D., and Kiani, A. (2016) “Mammalian fibroblast cells show strong preference for laser-generated hybrid amorphous silicon-SiO2 textures.” Journal of Applied Biomaterials & Functional Materials, doi:10.5301/jabfm.5000327

Ali, M.A.M, Chow, A.K., Kandasamy, A.D., West, L.J., Crawford, B.D., and Schulz, R. (2012). Mechanisms of cytosolic targeting of matrix metalloproteinase-2. Journal of Cellular Physiology. 227:3397–404.

Allain, R., Moriyasu, M., Crawford, B.D., and Courtenay, S. (2011). Lipofuscin quantification as a potential tool for age estimation in snow crabs, Chionoecetes opilio (O. Fabricius, 1788) (Decapoda, Oregoniidae) Crustaceana. 84:1441-63.

Allain, R., Moriyasu, M., Crawford, B.D., and Courtenay, S. (2011) Technical development and calibration of lipofuscin quantification for the potential use as an age estimate in snow crabs Chionoecetes opilio (Decapoda: Oregoniidae). Cahiers de Biologie Marine 53:203-215.

Viappiani, S., Nicolescu, A., Holt, A., Sawicki, G., Crawford, B.D., León, H., van Mulligen, T., and Schulz, R. (2009). Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochemical Pharmacology 77:826–834.

Sariahmetoglu, M., Crawford, B.D., Leon, H., Sawicka, J., Li, L., Ballermann, B.J., Holmes, C., Berthiaume, L.G., Holt, A., Sawicki, G., and Schulz, R. (2007). Matrix metalloprotease-2 is regulated by phosphorylation. FASEB J 21:2486-95.

Chow, A.K., Cena, J., El-Yazbi, A.F., Crawford, B.D., Holt, A., Cho, W.J., Daniel, E.E., and Schulz, R. (2007). Caveolin-1 inhibits matrix metalloproteinase-2 activity in the heart. Journal of Molecular and Cellular Cardiology 42:896-901.

Northwood, I. C., Tong, A. Y. H., Crawford, B. D., Drobnies, A. E. and Cornell, R. B. (1999) Shuttling of cytidylytransferase between the nucleus and ER accompanies the wave of PC synthesis upon reentry of quiescent cells into the cell division cycle. Journal of Biological Chemistry 274:26240-8

Crawford, B. D. and Burke, R. D. (1994) YIGSR domain of laminin binds surface receptors of mesenchyme and stimulates migration during gastrulation in sea urchins. Development 120:3227-3234

Thorndyke, M. C., Crawford, B. D. and Burke, R. D. (1992) Localization of a SALMFamide Neuropeptide in the Larval Nervous System of the Sand Dollar Dendraster excentricus. Acta Zoologica 73(4):207-212